Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prm Structured version   Visualization version   GIF version

Theorem 2pwp1prm 44929
Description: For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prm ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Distinct variable group:   𝑛,𝐾

Proof of Theorem 2pwp1prm
Dummy variables 𝑚 𝑝 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddprmdvds 16532 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
21adantlr 711 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
3 eldifi 4057 . . . . . . . 8 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℙ)
4 prmnn 16307 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . 7 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ)
6 simpl 482 . . . . . . 7 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → 𝐾 ∈ ℕ)
7 nndivides 15901 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
85, 6, 7syl2anr 596 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
9 2re 11977 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 2 ∈ ℝ)
11 nnnn0 12170 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
12 1le2 12112 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
1312a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ≤ 2)
1410, 11, 13expge1d 13811 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ≤ (2↑𝑚))
15 1zzd 12281 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℤ)
16 2nn 11976 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 2 ∈ ℕ)
1817, 11nnexpcld 13888 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1918nnzd 12354 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℤ)
20 zleltp1 12301 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2115, 19, 20syl2anc 583 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2214, 21mpbid 231 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) + 1))
2318nncnd 11919 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℂ)
24 1cnd 10901 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ∈ ℂ)
25 subneg 11200 . . . . . . . . . . . . . . . . . 18 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
2625breq2d 5082 . . . . . . . . . . . . . . . . 17 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2723, 24, 26syl2anc 583 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2822, 27mpbird 256 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) − -1))
2928adantl 481 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < ((2↑𝑚) − -1))
3029ad2antlr 723 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → 1 < ((2↑𝑚) − -1))
3118nnred 11918 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℝ)
3231adantl 481 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ)
3316a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℕ)
3411adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
355nnnn0d 12223 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ0)
3635adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℕ0)
3734, 36nn0mulcld 12228 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℕ0)
3833, 37nnexpcld 13888 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℕ)
3938nnred 11918 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℝ)
40 1red 10907 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
419a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℝ)
42 nnz 12272 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4342adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
445nnzd 12354 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℤ)
4544adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℤ)
4643, 45zmulcld 12361 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℤ)
47 1lt2 12074 . . . . . . . . . . . . . . . . . 18 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 2)
49 prmgt1 16330 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
503, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 1 < 𝑝)
5150adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 𝑝)
52 nnre 11910 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
5352adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
545nnred 11918 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℝ)
56 nngt0 11934 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 < 𝑚)
5756adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 0 < 𝑚)
58 ltmulgt11 11765 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
5953, 55, 57, 58syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
6051, 59mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 · 𝑝))
61 ltexp2a 13812 . . . . . . . . . . . . . . . . 17 (((2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ (𝑚 · 𝑝) ∈ ℤ) ∧ (1 < 2 ∧ 𝑚 < (𝑚 · 𝑝))) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6241, 43, 46, 48, 60, 61syl32anc 1376 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6332, 39, 40, 62ltadd1dd 11516 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6463ad2antlr 723 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6523, 24subnegd 11269 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
6665eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6766adantl 481 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6867ad2antlr 723 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
69 oveq2 7263 . . . . . . . . . . . . . . . 16 ((𝑚 · 𝑝) = 𝐾 → (2↑(𝑚 · 𝑝)) = (2↑𝐾))
7069oveq1d 7270 . . . . . . . . . . . . . . 15 ((𝑚 · 𝑝) = 𝐾 → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7170adantl 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7264, 68, 713brtr3d 5101 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) < ((2↑𝐾) + 1))
73 neg1z 12286 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℤ
7473a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → -1 ∈ ℤ)
7519, 74zsubcld 12360 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) ∈ ℤ)
7675adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∈ ℤ)
77 fzofi 13622 . . . . . . . . . . . . . . . . . . 19 (0..^𝑝) ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (0..^𝑝) ∈ Fin)
7919adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℤ)
80 elfzonn0 13360 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0..^𝑝) → 𝑘 ∈ ℕ0)
81 zexpcl 13725 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝑚) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8279, 80, 81syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8373a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → -1 ∈ ℤ)
84 fzonnsub 13340 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑝) → (𝑝𝑘) ∈ ℕ)
8584adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (𝑝𝑘) ∈ ℕ)
86 nnm1nn0 12204 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) − 1) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((𝑝𝑘) − 1) ∈ ℕ0)
88 zexpcl 13725 . . . . . . . . . . . . . . . . . . . 20 ((-1 ∈ ℤ ∧ ((𝑝𝑘) − 1) ∈ ℕ0) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
8983, 87, 88syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
9082, 89zmulcld 12361 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
9178, 90fsumzcl 15375 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
92 dvdsmul1 15915 . . . . . . . . . . . . . . . . 17 ((((2↑𝑚) − -1) ∈ ℤ ∧ Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9376, 91, 92syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9493ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9523adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
96 neg1cn 12017 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
9796a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 ∈ ℂ)
98 pwdif 15508 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℕ0 ∧ (2↑𝑚) ∈ ℂ ∧ -1 ∈ ℂ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9936, 95, 97, 98syl3anc 1369 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
10099breq2d 5082 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
101100ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
10294, 101mpbird 256 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
103 2cnd 11981 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 2 ∈ ℂ)
104 nnnn0 12170 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
105103, 104expcld 13792 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (2↑𝐾) ∈ ℂ)
106 1cnd 10901 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → 1 ∈ ℂ)
107105, 106subnegd 11269 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑𝐾) − -1) = ((2↑𝐾) + 1))
108107eqcomd 2744 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
110109adantr 480 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
111 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝐾 = (𝑚 · 𝑝) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
112111eqcoms 2746 . . . . . . . . . . . . . . . . . . 19 ((𝑚 · 𝑝) = 𝐾 → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
113112adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
114 2cnd 11981 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
115114, 36, 34expmuld 13795 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
116115ad2antlr 723 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
117113, 116eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = ((2↑𝑚)↑𝑝))
118 1exp 13740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℤ → (1↑𝑝) = 1)
11944, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → (1↑𝑝) = 1)
120119eqcomd 2744 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → 1 = (1↑𝑝))
121120negeqd 11145 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -1 = -(1↑𝑝))
122 1cnd 10901 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
123 oddn2prm 16441 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑝)
124 oexpneg 15982 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝) → (-1↑𝑝) = -(1↑𝑝))
125122, 5, 123, 124syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → (-1↑𝑝) = -(1↑𝑝))
126125eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -(1↑𝑝) = (-1↑𝑝))
127121, 126eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → -1 = (-1↑𝑝))
128127adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 = (-1↑𝑝))
129128ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → -1 = (-1↑𝑝))
130117, 129oveq12d 7273 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) − -1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
131110, 130eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
132131breq2d 5082 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝))))
133102, 132mpbird 256 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1))
13430, 72, 133dvdsnprmd 16323 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ¬ ((2↑𝐾) + 1) ∈ ℙ)
135134pm2.21d 121 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
136135ex 412 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((𝑚 · 𝑝) = 𝐾 → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
137136com23 86 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → (((2↑𝐾) + 1) ∈ ℙ → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
138137impancom 451 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
139138impl 455 . . . . . . 7 ((((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
140139rexlimdva 3212 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1418, 140sylbid 239 . . . . 5 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
142141rexlimdva 3212 . . . 4 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
143142adantr 480 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1442, 143mpd 15 . 2 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
145144pm2.18da 796 1 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  {csn 4558   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136  cn 11903  2c2 11958  0cn0 12163  cz 12249  ..^cfzo 13311  cexp 13710  Σcsu 15325  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466
This theorem is referenced by:  2pwp1prmfmtno  44930
  Copyright terms: Public domain W3C validator