Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prm Structured version   Visualization version   GIF version

Theorem 2pwp1prm 43758
Description: For every prime number of the form ((2↑𝑘) + 1) 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prm ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Distinct variable group:   𝑛,𝐾

Proof of Theorem 2pwp1prm
Dummy variables 𝑚 𝑝 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddprmdvds 16241 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
21adantlr 713 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
3 eldifi 4105 . . . . . . . 8 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℙ)
4 prmnn 16020 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . 7 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ)
6 simpl 485 . . . . . . 7 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → 𝐾 ∈ ℕ)
7 nndivides 15619 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
85, 6, 7syl2anr 598 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
9 2re 11714 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 2 ∈ ℝ)
11 nnnn0 11907 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
12 1le2 11849 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
1312a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ≤ 2)
1410, 11, 13expge1d 13532 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ≤ (2↑𝑚))
15 1zzd 12016 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℤ)
16 2nn 11713 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 2 ∈ ℕ)
1817, 11nnexpcld 13609 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1918nnzd 12089 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℤ)
20 zleltp1 12036 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2115, 19, 20syl2anc 586 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2214, 21mpbid 234 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) + 1))
2318nncnd 11656 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℂ)
24 1cnd 10638 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ∈ ℂ)
25 subneg 10937 . . . . . . . . . . . . . . . . . 18 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
2625breq2d 5080 . . . . . . . . . . . . . . . . 17 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2723, 24, 26syl2anc 586 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2822, 27mpbird 259 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) − -1))
2928adantl 484 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < ((2↑𝑚) − -1))
3029ad2antlr 725 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → 1 < ((2↑𝑚) − -1))
3118nnred 11655 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℝ)
3231adantl 484 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ)
3316a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℕ)
3411adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
355nnnn0d 11958 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ0)
3635adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℕ0)
3734, 36nn0mulcld 11963 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℕ0)
3833, 37nnexpcld 13609 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℕ)
3938nnred 11655 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℝ)
40 1red 10644 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
419a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℝ)
42 nnz 12007 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4342adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
445nnzd 12089 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℤ)
4544adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℤ)
4643, 45zmulcld 12096 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℤ)
47 1lt2 11811 . . . . . . . . . . . . . . . . . 18 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 2)
49 prmgt1 16043 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
503, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 1 < 𝑝)
5150adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 𝑝)
52 nnre 11647 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
5352adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
545nnred 11655 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℝ)
5554adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℝ)
56 nngt0 11671 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 < 𝑚)
5756adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 0 < 𝑚)
58 ltmulgt11 11502 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
5953, 55, 57, 58syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
6051, 59mpbid 234 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 · 𝑝))
61 ltexp2a 13533 . . . . . . . . . . . . . . . . 17 (((2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ (𝑚 · 𝑝) ∈ ℤ) ∧ (1 < 2 ∧ 𝑚 < (𝑚 · 𝑝))) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6241, 43, 46, 48, 60, 61syl32anc 1374 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6332, 39, 40, 62ltadd1dd 11253 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6463ad2antlr 725 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6523, 24subnegd 11006 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
6665eqcomd 2829 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6766adantl 484 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6867ad2antlr 725 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
69 oveq2 7166 . . . . . . . . . . . . . . . 16 ((𝑚 · 𝑝) = 𝐾 → (2↑(𝑚 · 𝑝)) = (2↑𝐾))
7069oveq1d 7173 . . . . . . . . . . . . . . 15 ((𝑚 · 𝑝) = 𝐾 → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7170adantl 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7264, 68, 713brtr3d 5099 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) < ((2↑𝐾) + 1))
73 neg1z 12021 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℤ
7473a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → -1 ∈ ℤ)
7519, 74zsubcld 12095 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) ∈ ℤ)
7675adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∈ ℤ)
77 fzofi 13345 . . . . . . . . . . . . . . . . . . 19 (0..^𝑝) ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (0..^𝑝) ∈ Fin)
7919adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℤ)
80 elfzonn0 13085 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0..^𝑝) → 𝑘 ∈ ℕ0)
81 zexpcl 13447 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝑚) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8279, 80, 81syl2an 597 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8373a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → -1 ∈ ℤ)
84 fzonnsub 13065 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑝) → (𝑝𝑘) ∈ ℕ)
8584adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (𝑝𝑘) ∈ ℕ)
86 nnm1nn0 11941 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) − 1) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((𝑝𝑘) − 1) ∈ ℕ0)
88 zexpcl 13447 . . . . . . . . . . . . . . . . . . . 20 ((-1 ∈ ℤ ∧ ((𝑝𝑘) − 1) ∈ ℕ0) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
8983, 87, 88syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
9082, 89zmulcld 12096 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
9178, 90fsumzcl 15094 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
92 dvdsmul1 15633 . . . . . . . . . . . . . . . . 17 ((((2↑𝑚) − -1) ∈ ℤ ∧ Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9376, 91, 92syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9493ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9523adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
96 neg1cn 11754 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
9796a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 ∈ ℂ)
98 pwdif 15225 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℕ0 ∧ (2↑𝑚) ∈ ℂ ∧ -1 ∈ ℂ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9936, 95, 97, 98syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
10099breq2d 5080 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
101100ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
10294, 101mpbird 259 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
103 2cnd 11718 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 2 ∈ ℂ)
104 nnnn0 11907 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
105103, 104expcld 13513 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (2↑𝐾) ∈ ℂ)
106 1cnd 10638 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → 1 ∈ ℂ)
107105, 106subnegd 11006 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑𝐾) − -1) = ((2↑𝐾) + 1))
108107eqcomd 2829 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
109108adantr 483 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
110109adantr 483 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
111 oveq2 7166 . . . . . . . . . . . . . . . . . . . 20 (𝐾 = (𝑚 · 𝑝) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
112111eqcoms 2831 . . . . . . . . . . . . . . . . . . 19 ((𝑚 · 𝑝) = 𝐾 → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
113112adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
114 2cnd 11718 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
115114, 36, 34expmuld 13516 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
116115ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
117113, 116eqtrd 2858 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = ((2↑𝑚)↑𝑝))
118 1exp 13461 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℤ → (1↑𝑝) = 1)
11944, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → (1↑𝑝) = 1)
120119eqcomd 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → 1 = (1↑𝑝))
121120negeqd 10882 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -1 = -(1↑𝑝))
122 1cnd 10638 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
123 oddn2prm 16151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑝)
124 oexpneg 15696 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝) → (-1↑𝑝) = -(1↑𝑝))
125122, 5, 123, 124syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → (-1↑𝑝) = -(1↑𝑝))
126125eqcomd 2829 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -(1↑𝑝) = (-1↑𝑝))
127121, 126eqtrd 2858 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → -1 = (-1↑𝑝))
128127adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 = (-1↑𝑝))
129128ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → -1 = (-1↑𝑝))
130117, 129oveq12d 7176 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) − -1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
131110, 130eqtrd 2858 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
132131breq2d 5080 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝))))
133102, 132mpbird 259 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1))
13430, 72, 133dvdsnprmd 16036 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ¬ ((2↑𝐾) + 1) ∈ ℙ)
135134pm2.21d 121 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
136135ex 415 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((𝑚 · 𝑝) = 𝐾 → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
137136com23 86 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → (((2↑𝐾) + 1) ∈ ℙ → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
138137impancom 454 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
139138impl 458 . . . . . . 7 ((((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
140139rexlimdva 3286 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1418, 140sylbid 242 . . . . 5 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
142141rexlimdva 3286 . . . 4 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
143142adantr 483 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1442, 143mpd 15 . 2 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
145144pm2.18da 798 1 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  cdif 3935  {csn 4569   class class class wbr 5068  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  -cneg 10873  cn 11640  2c2 11695  0cn0 11900  cz 11984  ..^cfzo 13036  cexp 13432  Σcsu 15044  cdvds 15609  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176
This theorem is referenced by:  2pwp1prmfmtno  43759
  Copyright terms: Public domain W3C validator