Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prm Structured version   Visualization version   GIF version

Theorem 2pwp1prm 44093
Description: For every prime number of the form ((2↑𝑘) + 1) 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prm ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Distinct variable group:   𝑛,𝐾

Proof of Theorem 2pwp1prm
Dummy variables 𝑚 𝑝 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddprmdvds 16232 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
21adantlr 714 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
3 eldifi 4057 . . . . . . . 8 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℙ)
4 prmnn 16011 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . 7 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ)
6 simpl 486 . . . . . . 7 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → 𝐾 ∈ ℕ)
7 nndivides 15612 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
85, 6, 7syl2anr 599 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
9 2re 11703 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 2 ∈ ℝ)
11 nnnn0 11896 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
12 1le2 11838 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
1312a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ≤ 2)
1410, 11, 13expge1d 13529 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ≤ (2↑𝑚))
15 1zzd 12005 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℤ)
16 2nn 11702 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 2 ∈ ℕ)
1817, 11nnexpcld 13606 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1918nnzd 12078 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℤ)
20 zleltp1 12025 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2115, 19, 20syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2214, 21mpbid 235 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) + 1))
2318nncnd 11645 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℂ)
24 1cnd 10629 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ∈ ℂ)
25 subneg 10928 . . . . . . . . . . . . . . . . . 18 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
2625breq2d 5045 . . . . . . . . . . . . . . . . 17 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2723, 24, 26syl2anc 587 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2822, 27mpbird 260 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) − -1))
2928adantl 485 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < ((2↑𝑚) − -1))
3029ad2antlr 726 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → 1 < ((2↑𝑚) − -1))
3118nnred 11644 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℝ)
3231adantl 485 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ)
3316a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℕ)
3411adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
355nnnn0d 11947 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ0)
3635adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℕ0)
3734, 36nn0mulcld 11952 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℕ0)
3833, 37nnexpcld 13606 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℕ)
3938nnred 11644 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℝ)
40 1red 10635 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
419a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℝ)
42 nnz 11996 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4342adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
445nnzd 12078 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℤ)
4544adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℤ)
4643, 45zmulcld 12085 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℤ)
47 1lt2 11800 . . . . . . . . . . . . . . . . . 18 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 2)
49 prmgt1 16034 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
503, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 1 < 𝑝)
5150adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 𝑝)
52 nnre 11636 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
5352adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
545nnred 11644 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℝ)
5554adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℝ)
56 nngt0 11660 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 < 𝑚)
5756adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 0 < 𝑚)
58 ltmulgt11 11493 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
5953, 55, 57, 58syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
6051, 59mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 · 𝑝))
61 ltexp2a 13530 . . . . . . . . . . . . . . . . 17 (((2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ (𝑚 · 𝑝) ∈ ℤ) ∧ (1 < 2 ∧ 𝑚 < (𝑚 · 𝑝))) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6241, 43, 46, 48, 60, 61syl32anc 1375 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6332, 39, 40, 62ltadd1dd 11244 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6463ad2antlr 726 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6523, 24subnegd 10997 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
6665eqcomd 2807 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6766adantl 485 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6867ad2antlr 726 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
69 oveq2 7147 . . . . . . . . . . . . . . . 16 ((𝑚 · 𝑝) = 𝐾 → (2↑(𝑚 · 𝑝)) = (2↑𝐾))
7069oveq1d 7154 . . . . . . . . . . . . . . 15 ((𝑚 · 𝑝) = 𝐾 → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7170adantl 485 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7264, 68, 713brtr3d 5064 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) < ((2↑𝐾) + 1))
73 neg1z 12010 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℤ
7473a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → -1 ∈ ℤ)
7519, 74zsubcld 12084 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) ∈ ℤ)
7675adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∈ ℤ)
77 fzofi 13341 . . . . . . . . . . . . . . . . . . 19 (0..^𝑝) ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (0..^𝑝) ∈ Fin)
7919adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℤ)
80 elfzonn0 13081 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0..^𝑝) → 𝑘 ∈ ℕ0)
81 zexpcl 13444 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝑚) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8279, 80, 81syl2an 598 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8373a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → -1 ∈ ℤ)
84 fzonnsub 13061 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑝) → (𝑝𝑘) ∈ ℕ)
8584adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (𝑝𝑘) ∈ ℕ)
86 nnm1nn0 11930 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) − 1) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((𝑝𝑘) − 1) ∈ ℕ0)
88 zexpcl 13444 . . . . . . . . . . . . . . . . . . . 20 ((-1 ∈ ℤ ∧ ((𝑝𝑘) − 1) ∈ ℕ0) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
8983, 87, 88syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
9082, 89zmulcld 12085 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
9178, 90fsumzcl 15087 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
92 dvdsmul1 15626 . . . . . . . . . . . . . . . . 17 ((((2↑𝑚) − -1) ∈ ℤ ∧ Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9376, 91, 92syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9493ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9523adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
96 neg1cn 11743 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
9796a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 ∈ ℂ)
98 pwdif 15218 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℕ0 ∧ (2↑𝑚) ∈ ℂ ∧ -1 ∈ ℂ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9936, 95, 97, 98syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
10099breq2d 5045 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
101100ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
10294, 101mpbird 260 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
103 2cnd 11707 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 2 ∈ ℂ)
104 nnnn0 11896 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
105103, 104expcld 13510 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (2↑𝐾) ∈ ℂ)
106 1cnd 10629 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → 1 ∈ ℂ)
107105, 106subnegd 10997 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑𝐾) − -1) = ((2↑𝐾) + 1))
108107eqcomd 2807 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
109108adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
110109adantr 484 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
111 oveq2 7147 . . . . . . . . . . . . . . . . . . . 20 (𝐾 = (𝑚 · 𝑝) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
112111eqcoms 2809 . . . . . . . . . . . . . . . . . . 19 ((𝑚 · 𝑝) = 𝐾 → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
113112adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
114 2cnd 11707 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
115114, 36, 34expmuld 13513 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
116115ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
117113, 116eqtrd 2836 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = ((2↑𝑚)↑𝑝))
118 1exp 13458 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℤ → (1↑𝑝) = 1)
11944, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → (1↑𝑝) = 1)
120119eqcomd 2807 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → 1 = (1↑𝑝))
121120negeqd 10873 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -1 = -(1↑𝑝))
122 1cnd 10629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
123 oddn2prm 16142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑝)
124 oexpneg 15689 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝) → (-1↑𝑝) = -(1↑𝑝))
125122, 5, 123, 124syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → (-1↑𝑝) = -(1↑𝑝))
126125eqcomd 2807 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -(1↑𝑝) = (-1↑𝑝))
127121, 126eqtrd 2836 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → -1 = (-1↑𝑝))
128127adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 = (-1↑𝑝))
129128ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → -1 = (-1↑𝑝))
130117, 129oveq12d 7157 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) − -1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
131110, 130eqtrd 2836 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
132131breq2d 5045 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝))))
133102, 132mpbird 260 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1))
13430, 72, 133dvdsnprmd 16027 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ¬ ((2↑𝐾) + 1) ∈ ℙ)
135134pm2.21d 121 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
136135ex 416 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((𝑚 · 𝑝) = 𝐾 → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
137136com23 86 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → (((2↑𝐾) + 1) ∈ ℙ → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
138137impancom 455 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
139138impl 459 . . . . . . 7 ((((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
140139rexlimdva 3246 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1418, 140sylbid 243 . . . . 5 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
142141rexlimdva 3246 . . . 4 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
143142adantr 484 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1442, 143mpd 15 . 2 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
145144pm2.18da 799 1 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wrex 3110  cdif 3881  {csn 4528   class class class wbr 5033  (class class class)co 7139  Fincfn 8496  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cle 10669  cmin 10863  -cneg 10864  cn 11629  2c2 11684  0cn0 11889  cz 11973  ..^cfzo 13032  cexp 13429  Σcsu 15037  cdvds 15602  cprime 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-dvds 15603  df-gcd 15837  df-prm 16009  df-pc 16167
This theorem is referenced by:  2pwp1prmfmtno  44094
  Copyright terms: Public domain W3C validator