Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pwp1prm Structured version   Visualization version   GIF version

Theorem 2pwp1prm 44657
Description: For ((2↑𝑘) + 1) to be prime, 𝑘 must be a power of 2, see Wikipedia "Fermat number", section "Other theorms about Fermat numbers", https://en.wikipedia.org/wiki/Fermat_number, 5-Aug-2021. (Contributed by AV, 7-Aug-2021.)
Assertion
Ref Expression
2pwp1prm ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Distinct variable group:   𝑛,𝐾

Proof of Theorem 2pwp1prm
Dummy variables 𝑚 𝑝 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddprmdvds 16419 . . . 4 ((𝐾 ∈ ℕ ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
21adantlr 715 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾)
3 eldifi 4027 . . . . . . . 8 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℙ)
4 prmnn 16194 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
53, 4syl 17 . . . . . . 7 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ)
6 simpl 486 . . . . . . 7 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → 𝐾 ∈ ℕ)
7 nndivides 15788 . . . . . . 7 ((𝑝 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
85, 6, 7syl2anr 600 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 ↔ ∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾))
9 2re 11869 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
109a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 2 ∈ ℝ)
11 nnnn0 12062 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
12 1le2 12004 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
1312a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ≤ 2)
1410, 11, 13expge1d 13700 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ≤ (2↑𝑚))
15 1zzd 12173 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 1 ∈ ℤ)
16 2nn 11868 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
1716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 2 ∈ ℕ)
1817, 11nnexpcld 13777 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1918nnzd 12246 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℤ)
20 zleltp1 12193 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℤ ∧ (2↑𝑚) ∈ ℤ) → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2115, 19, 20syl2anc 587 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (1 ≤ (2↑𝑚) ↔ 1 < ((2↑𝑚) + 1)))
2214, 21mpbid 235 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) + 1))
2318nncnd 11811 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℂ)
24 1cnd 10793 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → 1 ∈ ℂ)
25 subneg 11092 . . . . . . . . . . . . . . . . . 18 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
2625breq2d 5051 . . . . . . . . . . . . . . . . 17 (((2↑𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2723, 24, 26syl2anc 587 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (1 < ((2↑𝑚) − -1) ↔ 1 < ((2↑𝑚) + 1)))
2822, 27mpbird 260 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 < ((2↑𝑚) − -1))
2928adantl 485 . . . . . . . . . . . . . 14 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < ((2↑𝑚) − -1))
3029ad2antlr 727 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → 1 < ((2↑𝑚) − -1))
3118nnred 11810 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℝ)
3231adantl 485 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℝ)
3316a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℕ)
3411adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
355nnnn0d 12115 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℕ0)
3635adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℕ0)
3734, 36nn0mulcld 12120 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℕ0)
3833, 37nnexpcld 13777 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℕ)
3938nnred 11810 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) ∈ ℝ)
40 1red 10799 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
419a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℝ)
42 nnz 12164 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℤ)
4342adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
445nnzd 12246 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℤ)
4544adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℤ)
4643, 45zmulcld 12253 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑝) ∈ ℤ)
47 1lt2 11966 . . . . . . . . . . . . . . . . . 18 1 < 2
4847a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 2)
49 prmgt1 16217 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 1 < 𝑝)
503, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → 1 < 𝑝)
5150adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 1 < 𝑝)
52 nnre 11802 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
5352adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
545nnred 11810 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → 𝑝 ∈ ℝ)
5554adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑝 ∈ ℝ)
56 nngt0 11826 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 0 < 𝑚)
5756adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 0 < 𝑚)
58 ltmulgt11 11657 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ 0 < 𝑚) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
5953, 55, 57, 58syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (1 < 𝑝𝑚 < (𝑚 · 𝑝)))
6051, 59mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 𝑚 < (𝑚 · 𝑝))
61 ltexp2a 13701 . . . . . . . . . . . . . . . . 17 (((2 ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ (𝑚 · 𝑝) ∈ ℤ) ∧ (1 < 2 ∧ 𝑚 < (𝑚 · 𝑝))) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6241, 43, 46, 48, 60, 61syl32anc 1380 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) < (2↑(𝑚 · 𝑝)))
6332, 39, 40, 62ltadd1dd 11408 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6463ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) < ((2↑(𝑚 · 𝑝)) + 1))
6523, 24subnegd 11161 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) = ((2↑𝑚) + 1))
6665eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6766adantl 485 . . . . . . . . . . . . . . 15 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
6867ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) + 1) = ((2↑𝑚) − -1))
69 oveq2 7199 . . . . . . . . . . . . . . . 16 ((𝑚 · 𝑝) = 𝐾 → (2↑(𝑚 · 𝑝)) = (2↑𝐾))
7069oveq1d 7206 . . . . . . . . . . . . . . 15 ((𝑚 · 𝑝) = 𝐾 → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7170adantl 485 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑(𝑚 · 𝑝)) + 1) = ((2↑𝐾) + 1))
7264, 68, 713brtr3d 5070 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) < ((2↑𝐾) + 1))
73 neg1z 12178 . . . . . . . . . . . . . . . . . . . 20 -1 ∈ ℤ
7473a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → -1 ∈ ℤ)
7519, 74zsubcld 12252 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((2↑𝑚) − -1) ∈ ℤ)
7675adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∈ ℤ)
77 fzofi 13512 . . . . . . . . . . . . . . . . . . 19 (0..^𝑝) ∈ Fin
7877a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (0..^𝑝) ∈ Fin)
7919adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℤ)
80 elfzonn0 13252 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (0..^𝑝) → 𝑘 ∈ ℕ0)
81 zexpcl 13615 . . . . . . . . . . . . . . . . . . . 20 (((2↑𝑚) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8279, 80, 81syl2an 599 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((2↑𝑚)↑𝑘) ∈ ℤ)
8373a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → -1 ∈ ℤ)
84 fzonnsub 13232 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ (0..^𝑝) → (𝑝𝑘) ∈ ℕ)
8584adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (𝑝𝑘) ∈ ℕ)
86 nnm1nn0 12096 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝑘) ∈ ℕ → ((𝑝𝑘) − 1) ∈ ℕ0)
8785, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → ((𝑝𝑘) − 1) ∈ ℕ0)
88 zexpcl 13615 . . . . . . . . . . . . . . . . . . . 20 ((-1 ∈ ℤ ∧ ((𝑝𝑘) − 1) ∈ ℕ0) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
8983, 87, 88syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (-1↑((𝑝𝑘) − 1)) ∈ ℤ)
9082, 89zmulcld 12253 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0..^𝑝)) → (((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
9178, 90fsumzcl 15264 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ)
92 dvdsmul1 15802 . . . . . . . . . . . . . . . . 17 ((((2↑𝑚) − -1) ∈ ℤ ∧ Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))) ∈ ℤ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9376, 91, 92syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9493ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9523adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑𝑚) ∈ ℂ)
96 neg1cn 11909 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
9796a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 ∈ ℂ)
98 pwdif 15395 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℕ0 ∧ (2↑𝑚) ∈ ℂ ∧ -1 ∈ ℂ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
9936, 95, 97, 98syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚)↑𝑝) − (-1↑𝑝)) = (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1)))))
10099breq2d 5051 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
101100ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚) − -1) · Σ𝑘 ∈ (0..^𝑝)(((2↑𝑚)↑𝑘) · (-1↑((𝑝𝑘) − 1))))))
10294, 101mpbird 260 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
103 2cnd 11873 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 2 ∈ ℂ)
104 nnnn0 12062 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
105103, 104expcld 13681 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → (2↑𝐾) ∈ ℂ)
106 1cnd 10793 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ ℕ → 1 ∈ ℂ)
107105, 106subnegd 11161 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ → ((2↑𝐾) − -1) = ((2↑𝐾) + 1))
108107eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
109108adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
110109adantr 484 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = ((2↑𝐾) − -1))
111 oveq2 7199 . . . . . . . . . . . . . . . . . . . 20 (𝐾 = (𝑚 · 𝑝) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
112111eqcoms 2744 . . . . . . . . . . . . . . . . . . 19 ((𝑚 · 𝑝) = 𝐾 → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
113112adantl 485 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = (2↑(𝑚 · 𝑝)))
114 2cnd 11873 . . . . . . . . . . . . . . . . . . . 20 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → 2 ∈ ℂ)
115114, 36, 34expmuld 13684 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
116115ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑(𝑚 · 𝑝)) = ((2↑𝑚)↑𝑝))
117113, 116eqtrd 2771 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (2↑𝐾) = ((2↑𝑚)↑𝑝))
118 1exp 13629 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 ∈ ℤ → (1↑𝑝) = 1)
11944, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → (1↑𝑝) = 1)
120119eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → 1 = (1↑𝑝))
121120negeqd 11037 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -1 = -(1↑𝑝))
122 1cnd 10793 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → 1 ∈ ℂ)
123 oddn2prm 16328 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑝)
124 oexpneg 15869 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ 𝑝 ∈ ℕ ∧ ¬ 2 ∥ 𝑝) → (-1↑𝑝) = -(1↑𝑝))
125122, 5, 123, 124syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℙ ∖ {2}) → (-1↑𝑝) = -(1↑𝑝))
126125eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ (ℙ ∖ {2}) → -(1↑𝑝) = (-1↑𝑝))
127121, 126eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ (ℙ ∖ {2}) → -1 = (-1↑𝑝))
128127adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → -1 = (-1↑𝑝))
129128ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → -1 = (-1↑𝑝))
130117, 129oveq12d 7209 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) − -1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
131110, 130eqtrd 2771 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝐾) + 1) = (((2↑𝑚)↑𝑝) − (-1↑𝑝)))
132131breq2d 5051 . . . . . . . . . . . . . 14 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1) ↔ ((2↑𝑚) − -1) ∥ (((2↑𝑚)↑𝑝) − (-1↑𝑝))))
133102, 132mpbird 260 . . . . . . . . . . . . 13 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ((2↑𝑚) − -1) ∥ ((2↑𝐾) + 1))
13430, 72, 133dvdsnprmd 16210 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → ¬ ((2↑𝐾) + 1) ∈ ℙ)
135134pm2.21d 121 . . . . . . . . . . 11 (((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) ∧ (𝑚 · 𝑝) = 𝐾) → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
136135ex 416 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → ((𝑚 · 𝑝) = 𝐾 → (((2↑𝐾) + 1) ∈ ℙ → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
137136com23 86 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ (𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ)) → (((2↑𝐾) + 1) ∈ ℙ → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
138137impancom 455 . . . . . . . 8 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ((𝑝 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))))
139138impl 459 . . . . . . 7 ((((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) ∧ 𝑚 ∈ ℕ) → ((𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
140139rexlimdva 3193 . . . . . 6 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (∃𝑚 ∈ ℕ (𝑚 · 𝑝) = 𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1418, 140sylbid 243 . . . . 5 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ 𝑝 ∈ (ℙ ∖ {2})) → (𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
142141rexlimdva 3193 . . . 4 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
143142adantr 484 . . 3 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → (∃𝑝 ∈ (ℙ ∖ {2})𝑝𝐾 → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)))
1442, 143mpd 15 . 2 (((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) ∧ ¬ ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛)) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
145144pm2.18da 800 1 ((𝐾 ∈ ℕ ∧ ((2↑𝐾) + 1) ∈ ℙ) → ∃𝑛 ∈ ℕ0 𝐾 = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wrex 3052  cdif 3850  {csn 4527   class class class wbr 5039  (class class class)co 7191  Fincfn 8604  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  -cneg 11028  cn 11795  2c2 11850  0cn0 12055  cz 12141  ..^cfzo 13203  cexp 13600  Σcsu 15214  cdvds 15778  cprime 16191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-dvds 15779  df-gcd 16017  df-prm 16192  df-pc 16353
This theorem is referenced by:  2pwp1prmfmtno  44658
  Copyright terms: Public domain W3C validator