MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff1o Structured version   Visualization version   GIF version

Theorem cantnff1o 9545
Description: Simplify the isomorphism of cantnf 9542 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnff1o.1 𝑆 = dom (𝐴 CNF 𝐵)
cantnff1o.2 (𝜑𝐴 ∈ On)
cantnff1o.3 (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff1o (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))

Proof of Theorem cantnff1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnff1o.1 . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnff1o.2 . . 3 (𝜑𝐴 ∈ On)
3 cantnff1o.3 . . 3 (𝜑𝐵 ∈ On)
4 eqid 2736 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 9542 . 2 (𝜑 → (𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)))
6 isof1o 7244 . 2 ((𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
75, 6syl 17 1 (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  wrex 3070  {copab 5151   E cep 5517  dom cdm 5614  Oncon0 6296  1-1-ontowf1o 6472  cfv 6473   Isom wiso 6474  (class class class)co 7329  o coe 8358   CNF ccnf 9510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-seqom 8341  df-1o 8359  df-2o 8360  df-oadd 8363  df-omul 8364  df-oexp 8365  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-oi 9359  df-cnf 9511
This theorem is referenced by:  oef1o  9547  cnfcomlem  9548  cnfcom  9549  cnfcom2lem  9550  cnfcom2  9551  cnfcom3lem  9552  cnfcom3  9553
  Copyright terms: Public domain W3C validator