| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnff1o | Structured version Visualization version GIF version | ||
| Description: Simplify the isomorphism of cantnf 9712 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| cantnff1o.1 | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnff1o.2 | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnff1o.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
| Ref | Expression |
|---|---|
| cantnff1o | ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnff1o.1 | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnff1o.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnff1o.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | eqid 2736 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | 1, 2, 3, 4 | cantnf 9712 | . 2 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵))) |
| 6 | isof1o 7321 | . 2 ⊢ ((𝐴 CNF 𝐵) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {copab 5186 E cep 5557 dom cdm 5659 Oncon0 6357 –1-1-onto→wf1o 6535 ‘cfv 6536 Isom wiso 6537 (class class class)co 7410 ↑o coe 8484 CNF ccnf 9680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seqom 8467 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-oexp 8491 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-cnf 9681 |
| This theorem is referenced by: oef1o 9717 cnfcomlem 9718 cnfcom 9719 cnfcom2lem 9720 cnfcom2 9721 cnfcom3lem 9722 cnfcom3 9723 cantnf2 43316 |
| Copyright terms: Public domain | W3C validator |