| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnff1o | Structured version Visualization version GIF version | ||
| Description: Simplify the isomorphism of cantnf 9583 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.) |
| Ref | Expression |
|---|---|
| cantnff1o.1 | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnff1o.2 | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnff1o.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
| Ref | Expression |
|---|---|
| cantnff1o | ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnff1o.1 | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnff1o.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnff1o.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | eqid 2731 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | 1, 2, 3, 4 | cantnf 9583 | . 2 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵))) |
| 6 | isof1o 7257 | . 2 ⊢ ((𝐴 CNF 𝐵) Isom {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
| 7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {copab 5151 E cep 5513 dom cdm 5614 Oncon0 6306 –1-1-onto→wf1o 6480 ‘cfv 6481 Isom wiso 6482 (class class class)co 7346 ↑o coe 8384 CNF ccnf 9551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-oexp 8391 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-cnf 9552 |
| This theorem is referenced by: oef1o 9588 cnfcomlem 9589 cnfcom 9590 cnfcom2lem 9591 cnfcom2 9592 cnfcom3lem 9593 cnfcom3 9594 cantnf2 43366 |
| Copyright terms: Public domain | W3C validator |