MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff1o Structured version   Visualization version   GIF version

Theorem cantnff1o 9311
Description: Simplify the isomorphism of cantnf 9308 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnff1o.1 𝑆 = dom (𝐴 CNF 𝐵)
cantnff1o.2 (𝜑𝐴 ∈ On)
cantnff1o.3 (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff1o (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))

Proof of Theorem cantnff1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnff1o.1 . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnff1o.2 . . 3 (𝜑𝐴 ∈ On)
3 cantnff1o.3 . . 3 (𝜑𝐵 ∈ On)
4 eqid 2737 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 9308 . 2 (𝜑 → (𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)))
6 isof1o 7132 . 2 ((𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
75, 6syl 17 1 (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {copab 5115   E cep 5459  dom cdm 5551  Oncon0 6213  1-1-ontowf1o 6379  cfv 6380   Isom wiso 6381  (class class class)co 7213  o coe 8201   CNF ccnf 9276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-seqom 8184  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-oexp 8208  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-cnf 9277
This theorem is referenced by:  oef1o  9313  cnfcomlem  9314  cnfcom  9315  cnfcom2lem  9316  cnfcom2  9317  cnfcom3lem  9318  cnfcom3  9319
  Copyright terms: Public domain W3C validator