MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff1o Structured version   Visualization version   GIF version

Theorem cantnff1o 9737
Description: Simplify the isomorphism of cantnf 9734 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cantnff1o.1 𝑆 = dom (𝐴 CNF 𝐵)
cantnff1o.2 (𝜑𝐴 ∈ On)
cantnff1o.3 (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff1o (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))

Proof of Theorem cantnff1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnff1o.1 . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnff1o.2 . . 3 (𝜑𝐴 ∈ On)
3 cantnff1o.3 . . 3 (𝜑𝐵 ∈ On)
4 eqid 2736 . . 3 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 9734 . 2 (𝜑 → (𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)))
6 isof1o 7344 . 2 ((𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
75, 6syl 17 1 (𝜑 → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {copab 5204   E cep 5582  dom cdm 5684  Oncon0 6383  1-1-ontowf1o 6559  cfv 6560   Isom wiso 6561  (class class class)co 7432  o coe 8506   CNF ccnf 9702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-seqom 8489  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-oexp 8513  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-cnf 9703
This theorem is referenced by:  oef1o  9739  cnfcomlem  9740  cnfcom  9741  cnfcom2lem  9742  cnfcom2  9743  cnfcom3lem  9744  cnfcom3  9745  cantnf2  43343
  Copyright terms: Public domain W3C validator