![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cantnff1o | Structured version Visualization version GIF version |
Description: Simplify the isomorphism of cantnf 9637 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.) |
Ref | Expression |
---|---|
cantnff1o.1 | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
cantnff1o.2 | ⊢ (𝜑 → 𝐴 ∈ On) |
cantnff1o.3 | ⊢ (𝜑 → 𝐵 ∈ On) |
Ref | Expression |
---|---|
cantnff1o | ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnff1o.1 | . . 3 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
2 | cantnff1o.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ On) | |
3 | cantnff1o.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ On) | |
4 | eqid 2733 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
5 | 1, 2, 3, 4 | cantnf 9637 | . 2 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵))) |
6 | isof1o 7272 | . 2 ⊢ ((𝐴 CNF 𝐵) Isom {⟨𝑥, 𝑦⟩ ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
7 | 5, 6 | syl 17 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 {copab 5171 E cep 5540 dom cdm 5637 Oncon0 6321 –1-1-onto→wf1o 6499 ‘cfv 6500 Isom wiso 6501 (class class class)co 7361 ↑o coe 8415 CNF ccnf 9605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-supp 8097 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-seqom 8398 df-1o 8416 df-2o 8417 df-oadd 8420 df-omul 8421 df-oexp 8422 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fsupp 9312 df-oi 9454 df-cnf 9606 |
This theorem is referenced by: oef1o 9642 cnfcomlem 9643 cnfcom 9644 cnfcom2lem 9645 cnfcom2 9646 cnfcom3lem 9647 cnfcom3 9648 cantnf2 41707 |
Copyright terms: Public domain | W3C validator |