Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem3 Structured version   Visualization version   GIF version

Theorem dirkercncflem3 46120
Description: The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem3.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem3.a 𝐴 = (𝑌 − π)
dirkercncflem3.b 𝐵 = (𝑌 + π)
dirkercncflem3.f 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
dirkercncflem3.g 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem3.n (𝜑𝑁 ∈ ℕ)
dirkercncflem3.yr (𝜑𝑌 ∈ ℝ)
dirkercncflem3.yod (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐷   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑛)   𝐹(𝑦,𝑛)   𝐺(𝑦,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirkercncflem3.d . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2 oveq2 7439 . . . . 5 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦))
32fveq2d 6910 . . . 4 (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
43cbvmptv 5255 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
5 fvoveq1 7454 . . . . 5 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
65oveq2d 7447 . . . 4 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
76cbvmptv 5255 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
8 dirkercncflem3.a . . . . . . . 8 𝐴 = (𝑌 − π)
9 dirkercncflem3.b . . . . . . . 8 𝐵 = (𝑌 + π)
10 dirkercncflem3.yr . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
11 dirkercncflem3.yod . . . . . . . 8 (𝜑 → (𝑌 mod (2 · π)) = 0)
128, 9, 10, 11dirkercncflem1 46118 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
1312simprd 495 . . . . . 6 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
14 r19.26 3111 . . . . . 6 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔ (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1513, 14sylib 218 . . . . 5 (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1615simpld 494 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0)
1716r19.21bi 3251 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
182fveq2d 6910 . . . . 5 (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦)))
1918oveq2d 7447 . . . 4 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
2019cbvmptv 5255 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
21 fvoveq1 7454 . . . . 5 (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2)))
2221oveq2d 7447 . . . 4 (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑦 / 2))))
2322cbvmptv 5255 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
24 eqid 2737 . . 3 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2)))))
25 dirkercncflem3.n . . 3 (𝜑𝑁 ∈ ℕ)
2612simpld 494 . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
2715simprd 495 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)
2827r19.21bi 3251 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
291, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28dirkercncflem2 46119 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
301dirkerf 46112 . . . . 5 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
3125, 30syl 17 . . . 4 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
32 ax-resscn 11212 . . . . 5 ℝ ⊆ ℂ
3332a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6753 . . 3 (𝜑 → (𝐷𝑁):ℝ⟶ℂ)
35 ioossre 13448 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
3635a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
3736ssdifssd 4147 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
38 eqid 2737 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
39 eqid 2737 . . 3 ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))
40 iooretop 24786 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 retop 24782 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42 uniretop 24783 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4342isopn3 23074 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4441, 36, 43sylancr 587 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4540, 44mpbii 233 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
4626, 45eleqtrrd 2844 . . . . 5 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
47 tgioo4 24826 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4847a1i 11 . . . . . . 7 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
4948fveq2d 6910 . . . . . 6 (𝜑 → (int‘(topGen‘ran (,))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
5049fveq1d 6908 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5146, 50eleqtrd 2843 . . . 4 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5210snssd 4809 . . . . . . . 8 (𝜑 → {𝑌} ⊆ ℝ)
53 ssequn2 4189 . . . . . . . 8 ({𝑌} ⊆ ℝ ↔ (ℝ ∪ {𝑌}) = ℝ)
5452, 53sylib 218 . . . . . . 7 (𝜑 → (ℝ ∪ {𝑌}) = ℝ)
5554oveq2d 7447 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t ℝ))
5655fveq2d 6910 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
57 uncom 4158 . . . . . 6 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
5826snssd 4809 . . . . . . 7 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
59 undif 4482 . . . . . . 7 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6058, 59sylib 218 . . . . . 6 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6157, 60eqtrid 2789 . . . . 5 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
6256, 61fveq12d 6913 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
6351, 62eleqtrrd 2844 . . 3 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
6434, 37, 33, 38, 39, 63limcres 25921 . 2 (𝜑 → (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌) = ((𝐷𝑁) lim 𝑌))
6529, 64eleqtrd 2843 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948  cun 3949  wss 3951  ifcif 4525  {csn 4626  cmpt 5225  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  (,)cioo 13387   mod cmo 13909  sincsin 16099  cosccos 16100  πcpi 16102  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  Topctop 22899  intcnt 23025   lim climc 25897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dirkercncf  46122
  Copyright terms: Public domain W3C validator