Step | Hyp | Ref
| Expression |
1 | | dirkercncflem3.d |
. . 3
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0,
(((2 · 𝑛) + 1) / (2
· π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) ·
(sin‘(𝑦 /
2))))))) |
2 | | oveq2 7263 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦)) |
3 | 2 | fveq2d 6760 |
. . . 4
⊢ (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦))) |
4 | 3 | cbvmptv 5183 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦))) |
5 | | fvoveq1 7278 |
. . . . 5
⊢ (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2))) |
6 | 5 | oveq2d 7271 |
. . . 4
⊢ (𝑤 = 𝑦 → ((2 · π) ·
(sin‘(𝑤 / 2))) = ((2
· π) · (sin‘(𝑦 / 2)))) |
7 | 6 | cbvmptv 5183 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) ·
(sin‘(𝑤 / 2)))) =
(𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) ·
(sin‘(𝑦 /
2)))) |
8 | | dirkercncflem3.a |
. . . . . . . 8
⊢ 𝐴 = (𝑌 − π) |
9 | | dirkercncflem3.b |
. . . . . . . 8
⊢ 𝐵 = (𝑌 + π) |
10 | | dirkercncflem3.yr |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ ℝ) |
11 | | dirkercncflem3.yod |
. . . . . . . 8
⊢ (𝜑 → (𝑌 mod (2 · π)) =
0) |
12 | 8, 9, 10, 11 | dirkercncflem1 43534 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠
0))) |
13 | 12 | simprd 495 |
. . . . . 6
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)) |
14 | | r19.26 3094 |
. . . . . 6
⊢
(∀𝑦 ∈
((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔
(∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)) |
15 | 13, 14 | sylib 217 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)) |
16 | 15 | simpld 494 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0) |
17 | 16 | r19.21bi 3132 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0) |
18 | 2 | fveq2d 6760 |
. . . . 5
⊢ (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦))) |
19 | 18 | oveq2d 7271 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) |
20 | 19 | cbvmptv 5183 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦)))) |
21 | | fvoveq1 7278 |
. . . . 5
⊢ (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2))) |
22 | 21 | oveq2d 7271 |
. . . 4
⊢ (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π ·
(cos‘(𝑦 /
2)))) |
23 | 22 | cbvmptv 5183 |
. . 3
⊢ (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2)))) |
24 | | eqid 2738 |
. . 3
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π ·
(cos‘(𝑧 / 2))))) =
(𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π ·
(cos‘(𝑧 /
2))))) |
25 | | dirkercncflem3.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
26 | 12 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝐴(,)𝐵)) |
27 | 15 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0) |
28 | 27 | r19.21bi 3132 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0) |
29 | 1, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28 | dirkercncflem2 43535 |
. 2
⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌)) |
30 | 1 | dirkerf 43528 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐷‘𝑁):ℝ⟶ℝ) |
31 | 25, 30 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℝ) |
32 | | ax-resscn 10859 |
. . . . 5
⊢ ℝ
⊆ ℂ |
33 | 32 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
34 | 31, 33 | fssd 6602 |
. . 3
⊢ (𝜑 → (𝐷‘𝑁):ℝ⟶ℂ) |
35 | | ioossre 13069 |
. . . . 5
⊢ (𝐴(,)𝐵) ⊆ ℝ |
36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
37 | 36 | ssdifssd 4073 |
. . 3
⊢ (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ) |
38 | | eqid 2738 |
. . 3
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
39 | | eqid 2738 |
. . 3
⊢
((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})) =
((TopOpen‘ℂfld) ↾t (ℝ ∪
{𝑌})) |
40 | | iooretop 23835 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
41 | | retop 23831 |
. . . . . . . 8
⊢
(topGen‘ran (,)) ∈ Top |
42 | | uniretop 23832 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
43 | 42 | isopn3 22125 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))) |
44 | 41, 36, 43 | sylancr 586 |
. . . . . . 7
⊢ (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))) |
45 | 40, 44 | mpbii 232 |
. . . . . 6
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)) |
46 | 26, 45 | eleqtrrd 2842 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ ((int‘(topGen‘ran
(,)))‘(𝐴(,)𝐵))) |
47 | 38 | tgioo2 23872 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
48 | 47 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (topGen‘ran (,)) =
((TopOpen‘ℂfld) ↾t
ℝ)) |
49 | 48 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 →
(int‘(topGen‘ran (,))) =
(int‘((TopOpen‘ℂfld) ↾t
ℝ))) |
50 | 49 | fveq1d 6758 |
. . . . 5
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
51 | 46, 50 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → 𝑌 ∈
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
52 | 10 | snssd 4739 |
. . . . . . . 8
⊢ (𝜑 → {𝑌} ⊆ ℝ) |
53 | | ssequn2 4113 |
. . . . . . . 8
⊢ ({𝑌} ⊆ ℝ ↔
(ℝ ∪ {𝑌}) =
ℝ) |
54 | 52, 53 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (ℝ ∪ {𝑌}) = ℝ) |
55 | 54 | oveq2d 7271 |
. . . . . 6
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (ℝ ∪
{𝑌})) =
((TopOpen‘ℂfld) ↾t
ℝ)) |
56 | 55 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌}))) =
(int‘((TopOpen‘ℂfld) ↾t
ℝ))) |
57 | | uncom 4083 |
. . . . . 6
⊢ (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) |
58 | 26 | snssd 4739 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵)) |
59 | | undif 4412 |
. . . . . . 7
⊢ ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵)) |
60 | 58, 59 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵)) |
61 | 57, 60 | syl5eq 2791 |
. . . . 5
⊢ (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵)) |
62 | 56, 61 | fveq12d 6763 |
. . . 4
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) =
((int‘((TopOpen‘ℂfld) ↾t
ℝ))‘(𝐴(,)𝐵))) |
63 | 51, 62 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → 𝑌 ∈
((int‘((TopOpen‘ℂfld) ↾t (ℝ
∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}))) |
64 | 34, 37, 33, 38, 39, 63 | limcres 24955 |
. 2
⊢ (𝜑 → (((𝐷‘𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) limℂ 𝑌) = ((𝐷‘𝑁) limℂ 𝑌)) |
65 | 29, 64 | eleqtrd 2841 |
1
⊢ (𝜑 → ((𝐷‘𝑁)‘𝑌) ∈ ((𝐷‘𝑁) limℂ 𝑌)) |