Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem3 Structured version   Visualization version   GIF version

Theorem dirkercncflem3 44594
Description: The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem3.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem3.a 𝐴 = (𝑌 − π)
dirkercncflem3.b 𝐵 = (𝑌 + π)
dirkercncflem3.f 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
dirkercncflem3.g 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem3.n (𝜑𝑁 ∈ ℕ)
dirkercncflem3.yr (𝜑𝑌 ∈ ℝ)
dirkercncflem3.yod (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐷   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑛)   𝐹(𝑦,𝑛)   𝐺(𝑦,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirkercncflem3.d . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2 oveq2 7401 . . . . 5 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦))
32fveq2d 6882 . . . 4 (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
43cbvmptv 5254 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
5 fvoveq1 7416 . . . . 5 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
65oveq2d 7409 . . . 4 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
76cbvmptv 5254 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
8 dirkercncflem3.a . . . . . . . 8 𝐴 = (𝑌 − π)
9 dirkercncflem3.b . . . . . . . 8 𝐵 = (𝑌 + π)
10 dirkercncflem3.yr . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
11 dirkercncflem3.yod . . . . . . . 8 (𝜑 → (𝑌 mod (2 · π)) = 0)
128, 9, 10, 11dirkercncflem1 44592 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
1312simprd 496 . . . . . 6 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
14 r19.26 3110 . . . . . 6 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔ (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1513, 14sylib 217 . . . . 5 (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1615simpld 495 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0)
1716r19.21bi 3247 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
182fveq2d 6882 . . . . 5 (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦)))
1918oveq2d 7409 . . . 4 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
2019cbvmptv 5254 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
21 fvoveq1 7416 . . . . 5 (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2)))
2221oveq2d 7409 . . . 4 (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑦 / 2))))
2322cbvmptv 5254 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
24 eqid 2731 . . 3 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2)))))
25 dirkercncflem3.n . . 3 (𝜑𝑁 ∈ ℕ)
2612simpld 495 . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
2715simprd 496 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)
2827r19.21bi 3247 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
291, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28dirkercncflem2 44593 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
301dirkerf 44586 . . . . 5 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
3125, 30syl 17 . . . 4 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
32 ax-resscn 11149 . . . . 5 ℝ ⊆ ℂ
3332a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6722 . . 3 (𝜑 → (𝐷𝑁):ℝ⟶ℂ)
35 ioossre 13367 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
3635a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
3736ssdifssd 4138 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
38 eqid 2731 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
39 eqid 2731 . . 3 ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))
40 iooretop 24211 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 retop 24207 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42 uniretop 24208 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4342isopn3 22499 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4441, 36, 43sylancr 587 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4540, 44mpbii 232 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
4626, 45eleqtrrd 2835 . . . . 5 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
4738tgioo2 24248 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4847a1i 11 . . . . . . 7 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
4948fveq2d 6882 . . . . . 6 (𝜑 → (int‘(topGen‘ran (,))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
5049fveq1d 6880 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5146, 50eleqtrd 2834 . . . 4 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5210snssd 4805 . . . . . . . 8 (𝜑 → {𝑌} ⊆ ℝ)
53 ssequn2 4179 . . . . . . . 8 ({𝑌} ⊆ ℝ ↔ (ℝ ∪ {𝑌}) = ℝ)
5452, 53sylib 217 . . . . . . 7 (𝜑 → (ℝ ∪ {𝑌}) = ℝ)
5554oveq2d 7409 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t ℝ))
5655fveq2d 6882 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
57 uncom 4149 . . . . . 6 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
5826snssd 4805 . . . . . . 7 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
59 undif 4477 . . . . . . 7 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6058, 59sylib 217 . . . . . 6 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6157, 60eqtrid 2783 . . . . 5 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
6256, 61fveq12d 6885 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
6351, 62eleqtrrd 2835 . . 3 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
6434, 37, 33, 38, 39, 63limcres 25332 . 2 (𝜑 → (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌) = ((𝐷𝑁) lim 𝑌))
6529, 64eleqtrd 2834 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wral 3060  cdif 3941  cun 3942  wss 3944  ifcif 4522  {csn 4622  cmpt 5224  ran crn 5670  cres 5671  wf 6528  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  1c1 11093   + caddc 11095   · cmul 11097  cmin 11426   / cdiv 11853  cn 12194  2c2 12249  (,)cioo 13306   mod cmo 13816  sincsin 15989  cosccos 15990  πcpi 15992  t crest 17348  TopOpenctopn 17349  topGenctg 17365  fldccnfld 20878  Topctop 22324  intcnt 22450   lim climc 25308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-shft 14996  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15615  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-t1 22747  df-haus 22748  df-cmp 22820  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-limc 25312  df-dv 25313
This theorem is referenced by:  dirkercncf  44596
  Copyright terms: Public domain W3C validator