Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem3 Structured version   Visualization version   GIF version

Theorem dirkercncflem3 46110
Description: The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem3.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem3.a 𝐴 = (𝑌 − π)
dirkercncflem3.b 𝐵 = (𝑌 + π)
dirkercncflem3.f 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
dirkercncflem3.g 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem3.n (𝜑𝑁 ∈ ℕ)
dirkercncflem3.yr (𝜑𝑌 ∈ ℝ)
dirkercncflem3.yod (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐷   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑛)   𝐹(𝑦,𝑛)   𝐺(𝑦,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirkercncflem3.d . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2 oveq2 7398 . . . . 5 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦))
32fveq2d 6865 . . . 4 (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
43cbvmptv 5214 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
5 fvoveq1 7413 . . . . 5 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
65oveq2d 7406 . . . 4 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
76cbvmptv 5214 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
8 dirkercncflem3.a . . . . . . . 8 𝐴 = (𝑌 − π)
9 dirkercncflem3.b . . . . . . . 8 𝐵 = (𝑌 + π)
10 dirkercncflem3.yr . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
11 dirkercncflem3.yod . . . . . . . 8 (𝜑 → (𝑌 mod (2 · π)) = 0)
128, 9, 10, 11dirkercncflem1 46108 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
1312simprd 495 . . . . . 6 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
14 r19.26 3092 . . . . . 6 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔ (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1513, 14sylib 218 . . . . 5 (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1615simpld 494 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0)
1716r19.21bi 3230 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
182fveq2d 6865 . . . . 5 (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦)))
1918oveq2d 7406 . . . 4 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
2019cbvmptv 5214 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
21 fvoveq1 7413 . . . . 5 (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2)))
2221oveq2d 7406 . . . 4 (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑦 / 2))))
2322cbvmptv 5214 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
24 eqid 2730 . . 3 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2)))))
25 dirkercncflem3.n . . 3 (𝜑𝑁 ∈ ℕ)
2612simpld 494 . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
2715simprd 495 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)
2827r19.21bi 3230 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
291, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28dirkercncflem2 46109 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
301dirkerf 46102 . . . . 5 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
3125, 30syl 17 . . . 4 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
32 ax-resscn 11132 . . . . 5 ℝ ⊆ ℂ
3332a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6708 . . 3 (𝜑 → (𝐷𝑁):ℝ⟶ℂ)
35 ioossre 13375 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
3635a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
3736ssdifssd 4113 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
38 eqid 2730 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
39 eqid 2730 . . 3 ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))
40 iooretop 24660 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 retop 24656 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42 uniretop 24657 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4342isopn3 22960 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4441, 36, 43sylancr 587 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4540, 44mpbii 233 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
4626, 45eleqtrrd 2832 . . . . 5 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
47 tgioo4 24700 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4847a1i 11 . . . . . . 7 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
4948fveq2d 6865 . . . . . 6 (𝜑 → (int‘(topGen‘ran (,))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
5049fveq1d 6863 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5146, 50eleqtrd 2831 . . . 4 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5210snssd 4776 . . . . . . . 8 (𝜑 → {𝑌} ⊆ ℝ)
53 ssequn2 4155 . . . . . . . 8 ({𝑌} ⊆ ℝ ↔ (ℝ ∪ {𝑌}) = ℝ)
5452, 53sylib 218 . . . . . . 7 (𝜑 → (ℝ ∪ {𝑌}) = ℝ)
5554oveq2d 7406 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t ℝ))
5655fveq2d 6865 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
57 uncom 4124 . . . . . 6 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
5826snssd 4776 . . . . . . 7 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
59 undif 4448 . . . . . . 7 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6058, 59sylib 218 . . . . . 6 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6157, 60eqtrid 2777 . . . . 5 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
6256, 61fveq12d 6868 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
6351, 62eleqtrrd 2832 . . 3 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
6434, 37, 33, 38, 39, 63limcres 25794 . 2 (𝜑 → (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌) = ((𝐷𝑁) lim 𝑌))
6529, 64eleqtrd 2831 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cdif 3914  cun 3915  wss 3917  ifcif 4491  {csn 4592  cmpt 5191  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  (,)cioo 13313   mod cmo 13838  sincsin 16036  cosccos 16037  πcpi 16039  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  dirkercncf  46112
  Copyright terms: Public domain W3C validator