Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dirkercncflem3 Structured version   Visualization version   GIF version

Theorem dirkercncflem3 46103
Description: The Dirichlet Kernel is continuous at 𝑌 points that are multiples of (2 · π). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dirkercncflem3.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
dirkercncflem3.a 𝐴 = (𝑌 − π)
dirkercncflem3.b 𝐵 = (𝑌 + π)
dirkercncflem3.f 𝐹 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))
dirkercncflem3.g 𝐺 = (𝑦 ∈ (𝐴(,)𝐵) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
dirkercncflem3.n (𝜑𝑁 ∈ ℕ)
dirkercncflem3.yr (𝜑𝑌 ∈ ℝ)
dirkercncflem3.yod (𝜑 → (𝑌 mod (2 · π)) = 0)
Assertion
Ref Expression
dirkercncflem3 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐷   𝑦,𝑁   𝑦,𝑌   𝑦,𝑛   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐵(𝑛)   𝐷(𝑛)   𝐹(𝑦,𝑛)   𝐺(𝑦,𝑛)   𝑁(𝑛)   𝑌(𝑛)

Proof of Theorem dirkercncflem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirkercncflem3.d . . 3 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))
2 oveq2 7395 . . . . 5 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · 𝑤) = ((𝑁 + (1 / 2)) · 𝑦))
32fveq2d 6862 . . . 4 (𝑤 = 𝑦 → (sin‘((𝑁 + (1 / 2)) · 𝑤)) = (sin‘((𝑁 + (1 / 2)) · 𝑦)))
43cbvmptv 5211 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑤))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑦)))
5 fvoveq1 7410 . . . . 5 (𝑤 = 𝑦 → (sin‘(𝑤 / 2)) = (sin‘(𝑦 / 2)))
65oveq2d 7403 . . . 4 (𝑤 = 𝑦 → ((2 · π) · (sin‘(𝑤 / 2))) = ((2 · π) · (sin‘(𝑦 / 2))))
76cbvmptv 5211 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((2 · π) · (sin‘(𝑦 / 2))))
8 dirkercncflem3.a . . . . . . . 8 𝐴 = (𝑌 − π)
9 dirkercncflem3.b . . . . . . . 8 𝐵 = (𝑌 + π)
10 dirkercncflem3.yr . . . . . . . 8 (𝜑𝑌 ∈ ℝ)
11 dirkercncflem3.yod . . . . . . . 8 (𝜑 → (𝑌 mod (2 · π)) = 0)
128, 9, 10, 11dirkercncflem1 46101 . . . . . . 7 (𝜑 → (𝑌 ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0)))
1312simprd 495 . . . . . 6 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0))
14 r19.26 3091 . . . . . 6 (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})((sin‘(𝑦 / 2)) ≠ 0 ∧ (cos‘(𝑦 / 2)) ≠ 0) ↔ (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1513, 14sylib 218 . . . . 5 (𝜑 → (∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0 ∧ ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0))
1615simpld 494 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(sin‘(𝑦 / 2)) ≠ 0)
1716r19.21bi 3229 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (sin‘(𝑦 / 2)) ≠ 0)
182fveq2d 6862 . . . . 5 (𝑤 = 𝑦 → (cos‘((𝑁 + (1 / 2)) · 𝑤)) = (cos‘((𝑁 + (1 / 2)) · 𝑦)))
1918oveq2d 7403 . . . 4 (𝑤 = 𝑦 → ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤))) = ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
2019cbvmptv 5211 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑤)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ ((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑦))))
21 fvoveq1 7410 . . . . 5 (𝑤 = 𝑦 → (cos‘(𝑤 / 2)) = (cos‘(𝑦 / 2)))
2221oveq2d 7403 . . . 4 (𝑤 = 𝑦 → (π · (cos‘(𝑤 / 2))) = (π · (cos‘(𝑦 / 2))))
2322cbvmptv 5211 . . 3 (𝑤 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑤 / 2)))) = (𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌}) ↦ (π · (cos‘(𝑦 / 2))))
24 eqid 2729 . . 3 (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2))))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ (((𝑁 + (1 / 2)) · (cos‘((𝑁 + (1 / 2)) · 𝑧))) / (π · (cos‘(𝑧 / 2)))))
25 dirkercncflem3.n . . 3 (𝜑𝑁 ∈ ℕ)
2612simpld 494 . . 3 (𝜑𝑌 ∈ (𝐴(,)𝐵))
2715simprd 495 . . . 4 (𝜑 → ∀𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})(cos‘(𝑦 / 2)) ≠ 0)
2827r19.21bi 3229 . . 3 ((𝜑𝑦 ∈ ((𝐴(,)𝐵) ∖ {𝑌})) → (cos‘(𝑦 / 2)) ≠ 0)
291, 4, 7, 17, 20, 23, 24, 25, 26, 11, 28dirkercncflem2 46102 . 2 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌))
301dirkerf 46095 . . . . 5 (𝑁 ∈ ℕ → (𝐷𝑁):ℝ⟶ℝ)
3125, 30syl 17 . . . 4 (𝜑 → (𝐷𝑁):ℝ⟶ℝ)
32 ax-resscn 11125 . . . . 5 ℝ ⊆ ℂ
3332a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
3431, 33fssd 6705 . . 3 (𝜑 → (𝐷𝑁):ℝ⟶ℂ)
35 ioossre 13368 . . . . 5 (𝐴(,)𝐵) ⊆ ℝ
3635a1i 11 . . . 4 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
3736ssdifssd 4110 . . 3 (𝜑 → ((𝐴(,)𝐵) ∖ {𝑌}) ⊆ ℝ)
38 eqid 2729 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
39 eqid 2729 . . 3 ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))
40 iooretop 24653 . . . . . . 7 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 retop 24649 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42 uniretop 24650 . . . . . . . . 9 ℝ = (topGen‘ran (,))
4342isopn3 22953 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)𝐵) ⊆ ℝ) → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4441, 36, 43sylancr 587 . . . . . . 7 (𝜑 → ((𝐴(,)𝐵) ∈ (topGen‘ran (,)) ↔ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵)))
4540, 44mpbii 233 . . . . . 6 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = (𝐴(,)𝐵))
4626, 45eleqtrrd 2831 . . . . 5 (𝜑𝑌 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)))
47 tgioo4 24693 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4847a1i 11 . . . . . . 7 (𝜑 → (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ))
4948fveq2d 6862 . . . . . 6 (𝜑 → (int‘(topGen‘ran (,))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
5049fveq1d 6860 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5146, 50eleqtrd 2830 . . . 4 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
5210snssd 4773 . . . . . . . 8 (𝜑 → {𝑌} ⊆ ℝ)
53 ssequn2 4152 . . . . . . . 8 ({𝑌} ⊆ ℝ ↔ (ℝ ∪ {𝑌}) = ℝ)
5452, 53sylib 218 . . . . . . 7 (𝜑 → (ℝ ∪ {𝑌}) = ℝ)
5554oveq2d 7403 . . . . . 6 (𝜑 → ((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})) = ((TopOpen‘ℂfld) ↾t ℝ))
5655fveq2d 6862 . . . . 5 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌}))) = (int‘((TopOpen‘ℂfld) ↾t ℝ)))
57 uncom 4121 . . . . . 6 (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌}))
5826snssd 4773 . . . . . . 7 (𝜑 → {𝑌} ⊆ (𝐴(,)𝐵))
59 undif 4445 . . . . . . 7 ({𝑌} ⊆ (𝐴(,)𝐵) ↔ ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6058, 59sylib 218 . . . . . 6 (𝜑 → ({𝑌} ∪ ((𝐴(,)𝐵) ∖ {𝑌})) = (𝐴(,)𝐵))
6157, 60eqtrid 2776 . . . . 5 (𝜑 → (((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌}) = (𝐴(,)𝐵))
6256, 61fveq12d 6865 . . . 4 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})) = ((int‘((TopOpen‘ℂfld) ↾t ℝ))‘(𝐴(,)𝐵)))
6351, 62eleqtrrd 2831 . . 3 (𝜑𝑌 ∈ ((int‘((TopOpen‘ℂfld) ↾t (ℝ ∪ {𝑌})))‘(((𝐴(,)𝐵) ∖ {𝑌}) ∪ {𝑌})))
6434, 37, 33, 38, 39, 63limcres 25787 . 2 (𝜑 → (((𝐷𝑁) ↾ ((𝐴(,)𝐵) ∖ {𝑌})) lim 𝑌) = ((𝐷𝑁) lim 𝑌))
6529, 64eleqtrd 2830 1 (𝜑 → ((𝐷𝑁)‘𝑌) ∈ ((𝐷𝑁) lim 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  cun 3912  wss 3914  ifcif 4488  {csn 4589  cmpt 5188  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  (,)cioo 13306   mod cmo 13831  sincsin 16029  cosccos 16030  πcpi 16032  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  intcnt 22904   lim climc 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dirkercncf  46105
  Copyright terms: Public domain W3C validator