MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubm2 Structured version   Visualization version   GIF version

Theorem issubm2 18678
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm2.b 𝐵 = (Base‘𝑀)
issubm2.z 0 = (0g𝑀)
issubm2.h 𝐻 = (𝑀s 𝑆)
Assertion
Ref Expression
issubm2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))

Proof of Theorem issubm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubm2.b . . 3 𝐵 = (Base‘𝑀)
2 issubm2.z . . 3 0 = (0g𝑀)
3 eqid 2729 . . 3 (+g𝑀) = (+g𝑀)
41, 2, 3issubm 18677 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
5 issubm2.h . . . . . . 7 𝐻 = (𝑀s 𝑆)
61, 3, 2, 5issubmnd 18635 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
76bicomd 223 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mnd))
873expb 1120 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑆𝐵0𝑆)) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mnd))
98pm5.32da 579 . . 3 (𝑀 ∈ Mnd → (((𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd)))
10 df-3an 1088 . . 3 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
11 df-3an 1088 . . 3 ((𝑆𝐵0𝑆𝐻 ∈ Mnd) ↔ ((𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd))
129, 10, 113bitr4g 314 . 2 (𝑀 ∈ Mnd → ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
134, 12bitrd 279 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Mndcmnd 18608  SubMndcsubmnd 18656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658
This theorem is referenced by:  issubmndb  18679  submss  18683  submid  18684  subm0cl  18685  submmnd  18687  subsubm  18690  idresefmnd  18773  cycsubmcmn  19768  unitsubm  20271  subrgsubm  20470  primrootscoprmpow  42076
  Copyright terms: Public domain W3C validator