![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubm2 | Structured version Visualization version GIF version |
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubm2.b | ⊢ 𝐵 = (Base‘𝑀) |
issubm2.z | ⊢ 0 = (0g‘𝑀) |
issubm2.h | ⊢ 𝐻 = (𝑀 ↾s 𝑆) |
Ref | Expression |
---|---|
issubm2 | ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubm2.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
2 | issubm2.z | . . 3 ⊢ 0 = (0g‘𝑀) | |
3 | eqid 2778 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | 1, 2, 3 | issubm 17733 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
5 | issubm2.h | . . . . . . 7 ⊢ 𝐻 = (𝑀 ↾s 𝑆) | |
6 | 1, 3, 2, 5 | issubmnd 17704 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
7 | 6 | bicomd 215 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
8 | 7 | 3expb 1110 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
9 | 8 | pm5.32da 574 | . . 3 ⊢ (𝑀 ∈ Mnd → (((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd))) |
10 | df-3an 1073 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) | |
11 | df-3an 1073 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd)) | |
12 | 9, 10, 11 | 3bitr4g 306 | . 2 ⊢ (𝑀 ∈ Mnd → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
13 | 4, 12 | bitrd 271 | 1 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ⊆ wss 3792 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 ↾s cress 16256 +gcplusg 16338 0gc0g 16486 Mndcmnd 17680 SubMndcsubmnd 17720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 |
This theorem is referenced by: submss 17736 submid 17737 subm0cl 17738 submmnd 17740 subsubm 17743 unitsubm 19057 subrgsubm 19185 |
Copyright terms: Public domain | W3C validator |