| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issubm2 | Structured version Visualization version GIF version | ||
| Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| issubm2.b | ⊢ 𝐵 = (Base‘𝑀) |
| issubm2.z | ⊢ 0 = (0g‘𝑀) |
| issubm2.h | ⊢ 𝐻 = (𝑀 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| issubm2 | ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubm2.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | issubm2.z | . . 3 ⊢ 0 = (0g‘𝑀) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 4 | 1, 2, 3 | issubm 18711 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 5 | issubm2.h | . . . . . . 7 ⊢ 𝐻 = (𝑀 ↾s 𝑆) | |
| 6 | 1, 3, 2, 5 | issubmnd 18669 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 7 | 6 | bicomd 223 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
| 8 | 7 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
| 9 | 8 | pm5.32da 579 | . . 3 ⊢ (𝑀 ∈ Mnd → (((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd))) |
| 10 | df-3an 1088 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) | |
| 11 | df-3an 1088 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd)) | |
| 12 | 9, 10, 11 | 3bitr4g 314 | . 2 ⊢ (𝑀 ∈ Mnd → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| 13 | 4, 12 | bitrd 279 | 1 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 SubMndcsubmnd 18690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 |
| This theorem is referenced by: issubmndb 18713 submss 18717 submid 18718 subm0cl 18719 submmnd 18721 subsubm 18724 idresefmnd 18807 cycsubmcmn 19801 unitsubm 20304 subrgsubm 20500 primrootscoprmpow 42202 |
| Copyright terms: Public domain | W3C validator |