MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubmlem Structured version   Visualization version   GIF version

Theorem cnsubmlem 21351
Description: Lemma for nn0subm 21359 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
cnsubglem.1 (𝑥𝐴𝑥 ∈ ℂ)
cnsubglem.2 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
cnsubmlem.3 0 ∈ 𝐴
Assertion
Ref Expression
cnsubmlem 𝐴 ∈ (SubMnd‘ℂfld)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem cnsubmlem
StepHypRef Expression
1 cnsubglem.1 . . 3 (𝑥𝐴𝑥 ∈ ℂ)
21ssriv 3933 . 2 𝐴 ⊆ ℂ
3 cnsubmlem.3 . 2 0 ∈ 𝐴
4 cnsubglem.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
54rgen2 3172 . 2 𝑥𝐴𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴
6 cnring 21327 . . 3 fld ∈ Ring
7 ringmnd 20161 . . 3 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
8 cnfldbas 21295 . . . 4 ℂ = (Base‘ℂfld)
9 cnfld0 21329 . . . 4 0 = (0g‘ℂfld)
10 cnfldadd 21297 . . . 4 + = (+g‘ℂfld)
118, 9, 10issubm 18711 . . 3 (ℂfld ∈ Mnd → (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴)))
126, 7, 11mp2b 10 . 2 (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 + 𝑦) ∈ 𝐴))
132, 3, 5, 12mpbir3an 1342 1 𝐴 ∈ (SubMnd‘ℂfld)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009  Mndcmnd 18642  SubMndcsubmnd 18690  Ringcrg 20151  fldccnfld 21291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-cmn 19694  df-mgp 20059  df-ring 20153  df-cring 20154  df-cnfld 21292
This theorem is referenced by:  nn0subm  21359  rege0subm  21360
  Copyright terms: Public domain W3C validator