MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnsubmlem Structured version   Visualization version   GIF version

Theorem cnsubmlem 20868
Description: Lemma for nn0subm 20875 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
cnsubglem.1 (π‘₯ ∈ 𝐴 β†’ π‘₯ ∈ β„‚)
cnsubglem.2 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ + 𝑦) ∈ 𝐴)
cnsubmlem.3 0 ∈ 𝐴
Assertion
Ref Expression
cnsubmlem 𝐴 ∈ (SubMndβ€˜β„‚fld)
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem cnsubmlem
StepHypRef Expression
1 cnsubglem.1 . . 3 (π‘₯ ∈ 𝐴 β†’ π‘₯ ∈ β„‚)
21ssriv 3952 . 2 𝐴 βŠ† β„‚
3 cnsubmlem.3 . 2 0 ∈ 𝐴
4 cnsubglem.2 . . 3 ((π‘₯ ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) β†’ (π‘₯ + 𝑦) ∈ 𝐴)
54rgen2 3191 . 2 βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ + 𝑦) ∈ 𝐴
6 cnring 20842 . . 3 β„‚fld ∈ Ring
7 ringmnd 19982 . . 3 (β„‚fld ∈ Ring β†’ β„‚fld ∈ Mnd)
8 cnfldbas 20823 . . . 4 β„‚ = (Baseβ€˜β„‚fld)
9 cnfld0 20844 . . . 4 0 = (0gβ€˜β„‚fld)
10 cnfldadd 20824 . . . 4 + = (+gβ€˜β„‚fld)
118, 9, 10issubm 18622 . . 3 (β„‚fld ∈ Mnd β†’ (𝐴 ∈ (SubMndβ€˜β„‚fld) ↔ (𝐴 βŠ† β„‚ ∧ 0 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ + 𝑦) ∈ 𝐴)))
126, 7, 11mp2b 10 . 2 (𝐴 ∈ (SubMndβ€˜β„‚fld) ↔ (𝐴 βŠ† β„‚ ∧ 0 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ + 𝑦) ∈ 𝐴))
132, 3, 5, 12mpbir3an 1342 1 𝐴 ∈ (SubMndβ€˜β„‚fld)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   ∈ wcel 2107  βˆ€wral 3061   βŠ† wss 3914  β€˜cfv 6500  (class class class)co 7361  β„‚cc 11057  0cc0 11059   + caddc 11062  Mndcmnd 18564  SubMndcsubmnd 18608  Ringcrg 19972  β„‚fldccnfld 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-plusg 17154  df-mulr 17155  df-starv 17156  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-grp 18759  df-cmn 19572  df-mgp 19905  df-ring 19974  df-cring 19975  df-cnfld 20820
This theorem is referenced by:  nn0subm  20875  rege0subm  20876
  Copyright terms: Public domain W3C validator