Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnsubmlem | Structured version Visualization version GIF version |
Description: Lemma for nn0subm 20724 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
cnsubglem.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) |
cnsubglem.2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) |
cnsubmlem.3 | ⊢ 0 ∈ 𝐴 |
Ref | Expression |
---|---|
cnsubmlem | ⊢ 𝐴 ∈ (SubMnd‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsubglem.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3934 | . 2 ⊢ 𝐴 ⊆ ℂ |
3 | cnsubmlem.3 | . 2 ⊢ 0 ∈ 𝐴 | |
4 | cnsubglem.2 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) | |
5 | 4 | rgen2 3191 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴 |
6 | cnring 20691 | . . 3 ⊢ ℂfld ∈ Ring | |
7 | ringmnd 19860 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
8 | cnfldbas 20672 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
9 | cnfld0 20693 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
10 | cnfldadd 20673 | . . . 4 ⊢ + = (+g‘ℂfld) | |
11 | 8, 9, 10 | issubm 18509 | . . 3 ⊢ (ℂfld ∈ Mnd → (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴))) |
12 | 6, 7, 11 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (SubMnd‘ℂfld) ↔ (𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 + 𝑦) ∈ 𝐴)) |
13 | 2, 3, 5, 12 | mpbir3an 1340 | 1 ⊢ 𝐴 ∈ (SubMnd‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3896 ‘cfv 6463 (class class class)co 7313 ℂcc 10939 0cc0 10941 + caddc 10944 Mndcmnd 18452 SubMndcsubmnd 18496 Ringcrg 19850 ℂfldccnfld 20668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-addf 11020 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-plusg 17042 df-mulr 17043 df-starv 17044 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-submnd 18498 df-grp 18647 df-cmn 19455 df-mgp 19788 df-ring 19852 df-cring 19853 df-cnfld 20669 |
This theorem is referenced by: nn0subm 20724 rege0subm 20725 |
Copyright terms: Public domain | W3C validator |