![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubrg3 | Structured version Visualization version GIF version |
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubrg3.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
issubrg3 | ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2778 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2778 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 1, 2, 3 | issubrg2 19196 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
5 | 3anass 1079 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) | |
6 | 4, 5 | syl6bb 279 | . 2 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
7 | issubrg3.m | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 7 | ringmgp 18944 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
9 | 1 | subgss 17983 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
10 | 7, 1 | mgpbas 18886 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑀) |
11 | 7, 2 | ringidval 18894 | . . . . . . 7 ⊢ (1r‘𝑅) = (0g‘𝑀) |
12 | 7, 3 | mgpplusg 18884 | . . . . . . 7 ⊢ (.r‘𝑅) = (+g‘𝑀) |
13 | 10, 11, 12 | issubm 17737 | . . . . . 6 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
14 | 3anass 1079 | . . . . . 6 ⊢ ((𝑆 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) | |
15 | 13, 14 | syl6bb 279 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
16 | 15 | baibd 535 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
17 | 8, 9, 16 | syl2an 589 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
18 | 17 | pm5.32da 574 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
19 | 6, 18 | bitr4d 274 | 1 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ⊆ wss 3792 ‘cfv 6137 (class class class)co 6924 Basecbs 16259 .rcmulr 16343 Mndcmnd 17684 SubMndcsubmnd 17724 SubGrpcsubg 17976 mulGrpcmgp 18880 1rcur 18892 Ringcrg 18938 SubRingcsubrg 19172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-3 11443 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-ress 16267 df-plusg 16355 df-mulr 16356 df-0g 16492 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-submnd 17726 df-subg 17979 df-mgp 18881 df-ur 18893 df-ring 18940 df-subrg 19174 |
This theorem is referenced by: rhmeql 19206 rhmima 19207 cntzsubr 19208 subrgacs 38739 |
Copyright terms: Public domain | W3C validator |