Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubrg3 | Structured version Visualization version GIF version |
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubrg3.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
issubrg3 | ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 1, 2, 3 | issubrg2 20126 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
5 | 3anass 1094 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) | |
6 | 4, 5 | bitrdi 286 | . 2 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
7 | issubrg3.m | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | 7 | ringmgp 19864 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
9 | 1 | subgss 18832 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
10 | 7, 1 | mgpbas 19801 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑀) |
11 | 7, 2 | ringidval 19814 | . . . . . . 7 ⊢ (1r‘𝑅) = (0g‘𝑀) |
12 | 7, 3 | mgpplusg 19799 | . . . . . . 7 ⊢ (.r‘𝑅) = (+g‘𝑀) |
13 | 10, 11, 12 | issubm 18519 | . . . . . 6 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
14 | 3anass 1094 | . . . . . 6 ⊢ ((𝑆 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) | |
15 | 13, 14 | bitrdi 286 | . . . . 5 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
16 | 15 | baibd 540 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ (Base‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
17 | 8, 9, 16 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
18 | 17 | pm5.32da 579 | . 2 ⊢ (𝑅 ∈ Ring → ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
19 | 6, 18 | bitr4d 281 | 1 ⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3897 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 .rcmulr 17040 Mndcmnd 18462 SubMndcsubmnd 18506 SubGrpcsubg 18825 mulGrpcmgp 19795 1rcur 19812 Ringcrg 19858 SubRingcsubrg 20102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-0g 17229 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-submnd 18508 df-subg 18828 df-mgp 19796 df-ur 19813 df-ring 19860 df-subrg 20104 |
This theorem is referenced by: rhmeql 20136 rhmima 20137 cntzsubr 20139 subrgacs 20151 |
Copyright terms: Public domain | W3C validator |