Proof of Theorem cdlemh1
Step | Hyp | Ref
| Expression |
1 | | cdlemh.s |
. . 3
⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
2 | 1 | oveq1i 7285 |
. 2
⊢ (𝑆 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) |
3 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ HL) |
4 | | simp11 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
5 | | simp13 1204 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐺 ∈ 𝑇) |
6 | | simp12 1203 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐹 ∈ 𝑇) |
7 | | simp3r 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ≠ (𝑅‘𝐺)) |
8 | 7 | necomd 2999 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) |
9 | | cdlemh.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | cdlemh.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
11 | | cdlemh.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
12 | | cdlemh.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
13 | 9, 10, 11, 12 | trlcocnvat 38738 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
14 | 4, 5, 6, 8, 13 | syl121anc 1374 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) |
15 | 3 | hllatd 37378 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝐾 ∈ Lat) |
16 | | simp2l 1198 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐴) |
17 | | cdlemh.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
18 | 17, 9 | atbase 37303 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
19 | 16, 18 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑃 ∈ 𝐵) |
20 | 17, 10, 11, 12 | trlcl 38178 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ 𝐵) |
21 | 4, 5, 20 | syl2anc 584 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐺) ∈ 𝐵) |
22 | | cdlemh.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
23 | 17, 22 | latjcl 18157 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
24 | 15, 19, 21, 23 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵) |
25 | | simp2r 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ∈ 𝐴) |
26 | 17, 22, 9 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
27 | 3, 25, 14, 26 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
28 | | cdlemh.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
29 | 28, 22, 9 | hlatlej2 37390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
30 | 3, 25, 14, 29 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
31 | | cdlemh.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
32 | 17, 28, 22, 31, 9 | atmod4i1 37880 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ((𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐴 ∧ (𝑃 ∨ (𝑅‘𝐺)) ∈ 𝐵 ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ≤ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
33 | 3, 14, 24, 27, 30, 32 | syl131anc 1382 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
34 | 10, 11 | ltrncnv 38160 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ◡𝐹 ∈ 𝑇) |
35 | 4, 6, 34 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ◡𝐹 ∈ 𝑇) |
36 | 22, 10, 11, 12 | trljco2 38755 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
37 | 4, 5, 35, 36 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
38 | 10, 11, 12 | trlcnv 38179 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
39 | 4, 6, 38 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘◡𝐹) = (𝑅‘𝐹)) |
40 | 39 | oveq1d 7290 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘◡𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
41 | 37, 40 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
42 | 41 | oveq2d 7291 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
43 | 10, 11 | ltrnco 38733 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐹 ∈ 𝑇) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
44 | 4, 5, 35, 43 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐺 ∘ ◡𝐹) ∈ 𝑇) |
45 | 17, 10, 11, 12 | trlcl 38178 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐹) ∈ 𝑇) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
46 | 4, 44, 45 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) |
47 | 17, 22 | latjass 18201 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑅‘𝐺) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
48 | 15, 19, 21, 46, 47 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐺) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
49 | 17, 10, 11, 12 | trlcl 38178 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ 𝐵) |
50 | 4, 6, 49 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑅‘𝐹) ∈ 𝐵) |
51 | 17, 22 | latjass 18201 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑅‘𝐹) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
52 | 15, 19, 50, 46, 51 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑃 ∨ ((𝑅‘𝐹) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
53 | 42, 48, 52 | 3eqtr4d 2788 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
54 | 53 | oveq1d 7290 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
55 | | simp3l 1200 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹))) |
56 | 17, 9 | atbase 37303 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
57 | 25, 56 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → 𝑄 ∈ 𝐵) |
58 | 17, 22 | latjcl 18157 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑅‘𝐹) ∈ 𝐵) → (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵) |
59 | 15, 19, 50, 58 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵) |
60 | 17, 28, 22 | latjlej1 18171 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵)) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
61 | 15, 57, 59, 46, 60 | syl13anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
62 | 55, 61 | mpd 15 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
63 | 17, 22 | latjcl 18157 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝑅‘𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺 ∘ ◡𝐹)) ∈ 𝐵) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
64 | 15, 59, 46, 63 | syl3anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) |
65 | 17, 28, 31 | latleeqm2 18186 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵 ∧ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∈ 𝐵) → ((𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ↔ (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
66 | 15, 27, 64, 65 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ≤ ((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ↔ (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
67 | 62, 66 | mpbid 231 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐹)) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
68 | 33, 54, 67 | 3eqtrd 2782 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
69 | 2, 68 | eqtrid 2790 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑆 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |