Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh1 Structured version   Visualization version   GIF version

Theorem cdlemh1 38515
Description: Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b 𝐵 = (Base‘𝐾)
cdlemh.l = (le‘𝐾)
cdlemh.j = (join‘𝐾)
cdlemh.m = (meet‘𝐾)
cdlemh.a 𝐴 = (Atoms‘𝐾)
cdlemh.h 𝐻 = (LHyp‘𝐾)
cdlemh.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemh.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemh.s 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
Assertion
Ref Expression
cdlemh1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))

Proof of Theorem cdlemh1
StepHypRef Expression
1 cdlemh.s . . 3 𝑆 = ((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹))))
21oveq1i 7201 . 2 (𝑆 (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹)))
3 simp11l 1286 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ HL)
4 simp11 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 simp13 1207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐺𝑇)
6 simp12 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
7 simp3r 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ≠ (𝑅𝐺))
87necomd 2987 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ≠ (𝑅𝐹))
9 cdlemh.a . . . . . 6 𝐴 = (Atoms‘𝐾)
10 cdlemh.h . . . . . 6 𝐻 = (LHyp‘𝐾)
11 cdlemh.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
12 cdlemh.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
139, 10, 11, 12trlcocnvat 38424 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐹𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐹)) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
144, 5, 6, 8, 13syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐴)
153hllatd 37064 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐾 ∈ Lat)
16 simp2l 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐴)
17 cdlemh.b . . . . . . 7 𝐵 = (Base‘𝐾)
1817, 9atbase 36989 . . . . . 6 (𝑃𝐴𝑃𝐵)
1916, 18syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑃𝐵)
2017, 10, 11, 12trlcl 37864 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ 𝐵)
214, 5, 20syl2anc 587 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐺) ∈ 𝐵)
22 cdlemh.j . . . . . 6 = (join‘𝐾)
2317, 22latjcl 17899 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
2415, 19, 21, 23syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
25 simp2r 1202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐴)
2617, 22, 9hlatjcl 37067 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
273, 25, 14, 26syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵)
28 cdlemh.l . . . . . 6 = (le‘𝐾)
2928, 22, 9hlatlej2 37076 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐴) → (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹))))
303, 25, 14, 29syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹))))
31 cdlemh.m . . . . 5 = (meet‘𝐾)
3217, 28, 22, 31, 9atmod4i1 37566 . . . 4 ((𝐾 ∈ HL ∧ ((𝑅‘(𝐺𝐹)) ∈ 𝐴 ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵) ∧ (𝑅‘(𝐺𝐹)) (𝑄 (𝑅‘(𝐺𝐹)))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
333, 14, 24, 27, 30, 32syl131anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
3410, 11ltrncnv 37846 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
354, 6, 34syl2anc 587 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝐹𝑇)
3622, 10, 11, 12trljco2 38441 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
374, 5, 35, 36syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
3810, 11, 12trlcnv 37865 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) = (𝑅𝐹))
394, 6, 38syl2anc 587 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) = (𝑅𝐹))
4039oveq1d 7206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐹) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
4137, 40eqtrd 2771 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑅𝐺) (𝑅‘(𝐺𝐹))) = ((𝑅𝐹) (𝑅‘(𝐺𝐹))))
4241oveq2d 7207 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
4310, 11ltrnco 38419 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐹𝑇) → (𝐺𝐹) ∈ 𝑇)
444, 5, 35, 43syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝐺𝐹) ∈ 𝑇)
4517, 10, 11, 12trlcl 37864 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐹) ∈ 𝑇) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
464, 44, 45syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅‘(𝐺𝐹)) ∈ 𝐵)
4717, 22latjass 17943 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝐺) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))))
4815, 19, 21, 46, 47syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐺) (𝑅‘(𝐺𝐹)))))
4917, 10, 11, 12trlcl 37864 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
504, 6, 49syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑅𝐹) ∈ 𝐵)
5117, 22latjass 17943 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑅𝐹) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
5215, 19, 50, 46, 51syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) = (𝑃 ((𝑅𝐹) (𝑅‘(𝐺𝐹)))))
5342, 48, 523eqtr4d 2781 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) = ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))))
5453oveq1d 7206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))))
55 simp3l 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄 (𝑃 (𝑅𝐹)))
5617, 9atbase 36989 . . . . . . 7 (𝑄𝐴𝑄𝐵)
5725, 56syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → 𝑄𝐵)
5817, 22latjcl 17899 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑅𝐹) ∈ 𝐵) → (𝑃 (𝑅𝐹)) ∈ 𝐵)
5915, 19, 50, 58syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑃 (𝑅𝐹)) ∈ 𝐵)
6017, 28, 22latjlej1 17913 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑃 (𝑅𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵)) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹)))))
6115, 57, 59, 46, 60syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑃 (𝑅𝐹)) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹)))))
6255, 61mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))))
6317, 22latjcl 17899 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐹)) ∈ 𝐵 ∧ (𝑅‘(𝐺𝐹)) ∈ 𝐵) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
6415, 59, 46, 63syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵)
6517, 28, 31latleeqm2 17928 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑄 (𝑅‘(𝐺𝐹))) ∈ 𝐵 ∧ ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ∈ 𝐵) → ((𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ↔ (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹)))))
6615, 27, 64, 65syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → ((𝑄 (𝑅‘(𝐺𝐹))) ((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) ↔ (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹)))))
6762, 66mpbid 235 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐹)) (𝑅‘(𝐺𝐹))) (𝑄 (𝑅‘(𝐺𝐹)))) = (𝑄 (𝑅‘(𝐺𝐹))))
6833, 54, 673eqtrd 2775 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (((𝑃 (𝑅𝐺)) (𝑄 (𝑅‘(𝐺𝐹)))) (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
692, 68syl5eq 2783 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑄 (𝑃 (𝑅𝐹)) ∧ (𝑅𝐹) ≠ (𝑅𝐺))) → (𝑆 (𝑅‘(𝐺𝐹))) = (𝑄 (𝑅‘(𝐺𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  ccnv 5535  ccom 5540  cfv 6358  (class class class)co 7191  Basecbs 16666  lecple 16756  joincjn 17772  meetcmee 17773  Latclat 17891  Atomscatm 36963  HLchlt 37050  LHypclh 37684  LTrncltrn 37801  trLctrl 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-riotaBAD 36653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-undef 7993  df-map 8488  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-p1 17886  df-lat 17892  df-clat 17959  df-oposet 36876  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-llines 37198  df-lplanes 37199  df-lvols 37200  df-lines 37201  df-psubsp 37203  df-pmap 37204  df-padd 37496  df-lhyp 37688  df-laut 37689  df-ldil 37804  df-ltrn 37805  df-trl 37859
This theorem is referenced by:  cdlemh  38517
  Copyright terms: Public domain W3C validator