MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12bd Structured version   Visualization version   GIF version

Theorem lemul12bd 11436
Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
ltmul12ad.3 (𝜑𝐷 ∈ ℝ)
lemul12bd.4 (𝜑 → 0 ≤ 𝐴)
lemul12bd.5 (𝜑 → 0 ≤ 𝐷)
lemul12bd.6 (𝜑𝐴𝐵)
lemul12bd.7 (𝜑𝐶𝐷)
Assertion
Ref Expression
lemul12bd (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))

Proof of Theorem lemul12bd
StepHypRef Expression
1 lemul12bd.6 . 2 (𝜑𝐴𝐵)
2 lemul12bd.7 . 2 (𝜑𝐶𝐷)
3 ltp1d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 lemul12bd.4 . . . 4 (𝜑 → 0 ≤ 𝐴)
53, 4jca 512 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6 divgt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
7 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
8 ltmul12ad.3 . . . 4 (𝜑𝐷 ∈ ℝ)
9 lemul12bd.5 . . . 4 (𝜑 → 0 ≤ 𝐷)
108, 9jca 512 . . 3 (𝜑 → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
11 lemul12b 11350 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
125, 6, 7, 10, 11syl22anc 835 . 2 (𝜑 → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
131, 2, 12mp2and 695 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2081   class class class wbr 4966  (class class class)co 7021  cr 10387  0cc0 10388   · cmul 10393  cle 10527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-po 5367  df-so 5368  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725
This theorem is referenced by:  expmulnbnd  13451  fourierdlem77  42037
  Copyright terms: Public domain W3C validator