MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12ad Structured version   Visualization version   GIF version

Theorem lemul12ad 11385
Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
ltmul12ad.3 (𝜑𝐷 ∈ ℝ)
lemul12ad.4 (𝜑 → 0 ≤ 𝐴)
lemul12ad.5 (𝜑 → 0 ≤ 𝐶)
lemul12ad.6 (𝜑𝐴𝐵)
lemul12ad.7 (𝜑𝐶𝐷)
Assertion
Ref Expression
lemul12ad (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))

Proof of Theorem lemul12ad
StepHypRef Expression
1 lemul12ad.6 . 2 (𝜑𝐴𝐵)
2 lemul12ad.7 . 2 (𝜑𝐶𝐷)
3 ltp1d.1 . . . 4 (𝜑𝐴 ∈ ℝ)
4 lemul12ad.4 . . . 4 (𝜑 → 0 ≤ 𝐴)
53, 4jca 504 . . 3 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6 divgt0d.2 . . 3 (𝜑𝐵 ∈ ℝ)
7 lemul1ad.3 . . . 4 (𝜑𝐶 ∈ ℝ)
8 lemul12ad.5 . . . 4 (𝜑 → 0 ≤ 𝐶)
97, 8jca 504 . . 3 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
10 ltmul12ad.3 . . 3 (𝜑𝐷 ∈ ℝ)
11 lemul12a 11301 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
125, 6, 9, 10, 11syl22anc 826 . 2 (𝜑 → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
131, 2, 12mp2and 686 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wcel 2050   class class class wbr 4930  (class class class)co 6978  cr 10336  0cc0 10337   · cmul 10342  cle 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-po 5327  df-so 5328  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675
This theorem is referenced by:  supmullem1  11414  faclbnd  13468  o1mul  14835  fprodge1  15212  lgamgulmlem2  25312  lgamgulmlem3  25313  dchrmusum2  25775  dchrvmasumlem3  25780  dchrisum0lem2a  25798  mudivsum  25811  mulogsumlem  25812  selberg2b  25833  selberg3lem2  25839  pntrlog2bndlem3  25860  pntrlog2bndlem4  25861  pntrlog2bnd  25865  smcnlem  28254  hgt750lemf  31572  dvdivbd  41639  dvbdfbdioolem1  41644  stoweidlem16  41733  fourierdlem39  41863  etransclem23  41974
  Copyright terms: Public domain W3C validator