| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul12ad | Structured version Visualization version GIF version | ||
| Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| ltmul12ad.3 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| lemul12ad.4 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| lemul12ad.5 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul12ad.6 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| lemul12ad.7 | ⊢ (𝜑 → 𝐶 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| lemul12ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemul12ad.6 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | lemul12ad.7 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐷) | |
| 3 | ltp1d.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | lemul12ad.4 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 5 | 3, 4 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
| 6 | divgt0d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | lemul1ad.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 8 | lemul12ad.5 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 9 | 7, 8 | jca 511 | . . 3 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 10 | ltmul12ad.3 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 11 | lemul12a 12040 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | |
| 12 | 5, 6, 9, 10, 11 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
| 13 | 1, 2, 12 | mp2and 699 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 · cmul 11073 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: supmullem1 12153 faclbnd 14255 o1mul 15581 fprodge1 15961 lgamgulmlem2 26940 lgamgulmlem3 26941 dchrmusum2 27405 dchrvmasumlem3 27410 dchrisum0lem2a 27428 mudivsum 27441 mulogsumlem 27442 selberg2b 27463 selberg3lem2 27469 pntrlog2bndlem3 27490 pntrlog2bndlem4 27491 pntrlog2bnd 27495 smcnlem 30626 hgt750lemf 34644 aks6d1c2lem4 42115 dvdivbd 45921 dvbdfbdioolem1 45926 stoweidlem16 46014 fourierdlem39 46144 etransclem23 46255 |
| Copyright terms: Public domain | W3C validator |