| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlssbas | Structured version Visualization version GIF version | ||
| Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| lidlssbas.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| lidlssbas.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lidlssbas | ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.i | . . 3 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | ressbas 17165 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼)) |
| 4 | inss2 4191 | . 2 ⊢ (𝑈 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅) | |
| 5 | 3, 4 | eqsstrrdi 3983 | 1 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 LIdealclidl 21131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 |
| This theorem is referenced by: rnglidlmmgm 21170 rnglidlmsgrp 21171 rnglidlrng 21172 |
| Copyright terms: Public domain | W3C validator |