| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlssbas | Structured version Visualization version GIF version | ||
| Description: The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.) |
| Ref | Expression |
|---|---|
| lidlssbas.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| lidlssbas.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| Ref | Expression |
|---|---|
| lidlssbas | ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.i | . . 3 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | ressbas 17206 | . 2 ⊢ (𝑈 ∈ 𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼)) |
| 4 | inss2 4201 | . 2 ⊢ (𝑈 ∩ (Base‘𝑅)) ⊆ (Base‘𝑅) | |
| 5 | 3, 4 | eqsstrrdi 3992 | 1 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 LIdealclidl 21116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 |
| This theorem is referenced by: rnglidlmmgm 21155 rnglidlmsgrp 21156 rnglidlrng 21157 |
| Copyright terms: Public domain | W3C validator |