MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlss Structured version   Visualization version   GIF version

Theorem lidlss 20394
Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
lidlss.b 𝐵 = (Base‘𝑊)
lidlss.i 𝐼 = (LIdeal‘𝑊)
Assertion
Ref Expression
lidlss (𝑈𝐼𝑈𝐵)

Proof of Theorem lidlss
StepHypRef Expression
1 lidlss.b . . 3 𝐵 = (Base‘𝑊)
2 rlmbas 20378 . . 3 (Base‘𝑊) = (Base‘(ringLMod‘𝑊))
31, 2eqtri 2766 . 2 𝐵 = (Base‘(ringLMod‘𝑊))
4 lidlss.i . . 3 𝐼 = (LIdeal‘𝑊)
5 lidlval 20375 . . 3 (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))
64, 5eqtri 2766 . 2 𝐼 = (LSubSp‘(ringLMod‘𝑊))
73, 6lssss 20113 1 (𝑈𝐼𝑈𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  LSubSpclss 20108  ringLModcrglmod 20346  LIdealclidl 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-sca 16904  df-vsca 16905  df-ip 16906  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351
This theorem is referenced by:  lidlsubg  20399  lidl1el  20402  drngnidl  20413  2idlcpbl  20418  lpigen  20440  zringlpirlem1  20596  zringlpirlem3  20598  zndvds  20669  ig1peu  25241  ig1pdvds  25246  ig1prsp  25247  ply1lpir  25248  rspidlid  31472  ringlsmss1  31486  ringlsmss2  31487  lsmidl  31491  intlidl  31504  0ringidl  31507  elrspunidl  31508  rhmimaidl  31511  prmidl2  31518  idlmulssprm  31519  mxidlprm  31542  ssmxidllem  31543  idlsrgmulrcl  31557  idlsrgmulrss1  31558  idlsrgmulrss2  31559  zarcls1  31721  zarclsun  31722  zarclsiin  31723  zarclsint  31724  zarcmplem  31733  rhmpreimacnlem  31736  hbtlem2  40865  hbtlem4  40867  hbtlem5  40869  hbtlem6  40870  hbt  40871  lidldomn1  45367  lidlbas  45369
  Copyright terms: Public domain W3C validator