| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lidlss | Structured version Visualization version GIF version | ||
| Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| lidlss.b | ⊢ 𝐵 = (Base‘𝑊) |
| lidlss.i | ⊢ 𝐼 = (LIdeal‘𝑊) |
| Ref | Expression |
|---|---|
| lidlss | ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlss.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | rlmbas 21156 | . . 3 ⊢ (Base‘𝑊) = (Base‘(ringLMod‘𝑊)) | |
| 3 | 1, 2 | eqtri 2759 | . 2 ⊢ 𝐵 = (Base‘(ringLMod‘𝑊)) |
| 4 | lidlss.i | . . 3 ⊢ 𝐼 = (LIdeal‘𝑊) | |
| 5 | lidlval 21176 | . . 3 ⊢ (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)) | |
| 6 | 4, 5 | eqtri 2759 | . 2 ⊢ 𝐼 = (LSubSp‘(ringLMod‘𝑊)) |
| 7 | 3, 6 | lssss 20898 | 1 ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 Basecbs 17233 LSubSpclss 20893 ringLModcrglmod 21135 LIdealclidl 21172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-sca 17292 df-vsca 17293 df-ip 17294 df-lss 20894 df-sra 21136 df-rgmod 21137 df-lidl 21174 |
| This theorem is referenced by: lidlbas 21180 lidlsubg 21189 lidl1el 21192 drngnidl 21209 2idlss 21228 2idlcpblrng 21237 rng2idl1cntr 21271 lpigen 21301 zringlpirlem1 21428 zringlpirlem3 21430 zndvds 21515 ig1peu 26137 ig1pdvds 26142 ig1prsp 26143 ply1lpir 26144 rspidlid 33395 ringlsmss1 33416 ringlsmss2 33417 lsmidl 33421 intlidl 33440 0ringidl 33441 elrspunidl 33448 elrspunsn 33449 rhmimaidl 33452 prmidl2 33461 idlmulssprm 33462 ssdifidllem 33476 ssdifidlprm 33478 mxidlprm 33490 ssmxidllem 33493 opprqusmulr 33511 opprqus1r 33512 opprqusdrng 33513 qsdrngilem 33514 qsdrngi 33515 qsdrnglem2 33516 idlsrgmulrcl 33530 idlsrgmulrss1 33531 idlsrgmulrss2 33532 dfufd2 33570 ig1pmindeg 33616 minplycl 33745 irngnminplynz 33751 zarcls1 33905 zarclsun 33906 zarclsiin 33907 zarclsint 33908 zarcmplem 33917 rhmpreimacnlem 33920 rspssbasd 35667 hbtlem2 43115 hbtlem4 43117 hbtlem5 43119 hbtlem6 43120 hbt 43121 lidldomn1 48173 |
| Copyright terms: Public domain | W3C validator |