Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1533
∈ wcel 2098 ⊆
wss 3945 ‘cfv 6547
Basecbs 17180 LSubSpclss 20820
ringLModcrglmod 21062 LIdealclidl 21107 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305
df-3 12306 df-4 12307
df-5 12308 df-6 12309
df-7 12310 df-8 12311
df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-sca 17249 df-vsca 17250 df-ip 17251 df-lss 20821 df-sra 21063 df-rgmod 21064 df-lidl 21109 |
This theorem is referenced by: lidlbas
21115 lidlsubg
21124 lidl1el
21127 drngnidl
21143 2idlss
21161 2idlcpblrng
21170 rng2idl1cntr
21200 lpigen
21230 zringlpirlem1
21393 zringlpirlem3
21395 zndvds
21488 ig1peu
26140 ig1pdvds
26145 ig1prsp
26146 ply1lpir
26147 rspidlid
33158 ringlsmss1
33179 ringlsmss2
33180 lsmidl
33184 intlidl
33206 0ringidl
33210 elrspunidl
33218 elrspunsn
33219 rhmimaidl
33222 prmidl2
33231 idlmulssprm
33232 mxidlprm
33257 ssmxidllem
33260 opprqusmulr
33276 opprqus1r
33277 opprqusdrng
33278 qsdrngilem
33279 qsdrngi
33280 qsdrnglem2
33281 idlsrgmulrcl
33295 idlsrgmulrss1
33296 idlsrgmulrss2
33297 ig1pmindeg
33359 minplycl
33464 irngnminplynz
33469 zarcls1
33557 zarclsun
33558 zarclsiin
33559 zarclsint
33560 zarcmplem
33569 rhmpreimacnlem
33572 hbtlem2
42630 hbtlem4
42632 hbtlem5
42634 hbtlem6
42635 hbt
42636 lidldomn1
47421 |