Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1534
∈ wcel 2099 ⊆
wss 3944 ‘cfv 6542
Basecbs 17171 LSubSpclss 20804
ringLModcrglmod 21046 LIdealclidl 21091 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297
df-3 12298 df-4 12299
df-5 12300 df-6 12301
df-7 12302 df-8 12303
df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-sca 17240 df-vsca 17241 df-ip 17242 df-lss 20805 df-sra 21047 df-rgmod 21048 df-lidl 21093 |
This theorem is referenced by: lidlbas
21099 lidlsubg
21108 lidl1el
21111 drngnidl
21127 2idlss
21145 2idlcpblrng
21154 rng2idl1cntr
21184 lpigen
21214 zringlpirlem1
21375 zringlpirlem3
21377 zndvds
21470 ig1peu
26096 ig1pdvds
26101 ig1prsp
26102 ply1lpir
26103 rspidlid
33026 ringlsmss1
33045 ringlsmss2
33046 lsmidl
33050 intlidl
33069 0ringidl
33072 elrspunidl
33079 elrspunsn
33080 rhmimaidl
33083 prmidl2
33092 idlmulssprm
33093 mxidlprm
33119 ssmxidllem
33122 opprqusmulr
33138 opprqus1r
33139 opprqusdrng
33140 qsdrngilem
33141 qsdrngi
33142 qsdrnglem2
33143 idlsrgmulrcl
33157 idlsrgmulrss1
33158 idlsrgmulrss2
33159 ig1pmindeg
33204 minplycl
33313 irngnminplynz
33318 zarcls1
33406 zarclsun
33407 zarclsiin
33408 zarclsint
33409 zarcmplem
33418 rhmpreimacnlem
33421 hbtlem2
42470 hbtlem4
42472 hbtlem5
42474 hbtlem6
42475 hbt
42476 lidldomn1
47216 |