Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lidlbas Structured version   Visualization version   GIF version

Theorem lidlbas 44534
Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
Hypotheses
Ref Expression
lidlabl.l 𝐿 = (LIdeal‘𝑅)
lidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
lidlbas (𝑈𝐿 → (Base‘𝐼) = 𝑈)

Proof of Theorem lidlbas
StepHypRef Expression
1 lidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
2 eqid 2801 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2ressbas 16549 . 2 (𝑈𝐿 → (𝑈 ∩ (Base‘𝑅)) = (Base‘𝐼))
4 lidlabl.l . . . 4 𝐿 = (LIdeal‘𝑅)
52, 4lidlss 19979 . . 3 (𝑈𝐿𝑈 ⊆ (Base‘𝑅))
6 df-ss 3901 . . 3 (𝑈 ⊆ (Base‘𝑅) ↔ (𝑈 ∩ (Base‘𝑅)) = 𝑈)
75, 6sylib 221 . 2 (𝑈𝐿 → (𝑈 ∩ (Base‘𝑅)) = 𝑈)
83, 7eqtr3d 2838 1 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cin 3883  wss 3884  cfv 6328  (class class class)co 7139  Basecbs 16478  s cress 16479  LIdealclidl 19938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-sca 16576  df-vsca 16577  df-ip 16578  df-lss 19700  df-sra 19940  df-rgmod 19941  df-lidl 19942
This theorem is referenced by:  lidlmmgm  44536  zlidlring  44539  uzlidlring  44540
  Copyright terms: Public domain W3C validator