![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnmod1i2 | Structured version Visualization version GIF version |
Description: Version of modular law pmod1i 35923 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
llnmod1i2 | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1248 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | simpl2 1250 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
3 | simprl 789 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | simprr 791 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
5 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | eqid 2825 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
9 | eqid 2825 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
10 | 5, 6, 7, 8, 9 | pmapjlln1 35930 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1497 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
12 | 1 | hllatd 35439 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
13 | 5, 7 | atbase 35364 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
14 | 3, 13 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
15 | 5, 7 | atbase 35364 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
16 | 4, 15 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
17 | 5, 6 | latjcl 17404 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
18 | 12, 14, 16, 17 | syl3anc 1496 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
19 | simpl3 1252 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑌 ∈ 𝐵) | |
20 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
21 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
22 | 5, 20, 6, 21, 8, 9 | hlmod1i 35931 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
23 | 1, 2, 18, 19, 22 | syl13anc 1497 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
24 | 11, 23 | mpan2d 687 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
25 | 24 | 3impia 1151 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌))) |
26 | 25 | eqcomd 2831 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 lecple 16312 joincjn 17297 meetcmee 17298 Latclat 17398 Atomscatm 35338 HLchlt 35425 pmapcpmap 35572 +𝑃cpadd 35870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-1st 7428 df-2nd 7429 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-lat 17399 df-clat 17461 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-psubsp 35578 df-pmap 35579 df-padd 35871 |
This theorem is referenced by: llnmod2i2 35938 dalawlem12 35957 |
Copyright terms: Public domain | W3C validator |