Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnmod1i2 | Structured version Visualization version GIF version |
Description: Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
llnmod1i2 | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | simpl2 1190 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
3 | simprl 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | simprr 769 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
5 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | eqid 2738 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
9 | eqid 2738 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
10 | 5, 6, 7, 8, 9 | pmapjlln1 37796 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
12 | 1 | hllatd 37305 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
13 | 5, 7 | atbase 37230 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
14 | 3, 13 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
15 | 5, 7 | atbase 37230 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
16 | 4, 15 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
17 | 5, 6 | latjcl 18072 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
18 | 12, 14, 16, 17 | syl3anc 1369 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
19 | simpl3 1191 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑌 ∈ 𝐵) | |
20 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
21 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
22 | 5, 20, 6, 21, 8, 9 | hlmod1i 37797 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
23 | 1, 2, 18, 19, 22 | syl13anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
24 | 11, 23 | mpan2d 690 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
25 | 24 | 3impia 1115 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌))) |
26 | 25 | eqcomd 2744 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Latclat 18064 Atomscatm 37204 HLchlt 37291 pmapcpmap 37438 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-psubsp 37444 df-pmap 37445 df-padd 37737 |
This theorem is referenced by: llnmod2i2 37804 dalawlem12 37823 |
Copyright terms: Public domain | W3C validator |