Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod1i2 Structured version   Visualization version   GIF version

Theorem llnmod1i2 39899
Description: Version of modular law pmod1i 39887 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod1i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))

Proof of Theorem llnmod1i2
StepHypRef Expression
1 simpl1 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
2 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
3 simprl 770 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
4 simprr 772 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
5 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
6 atmod.j . . . . . 6 = (join‘𝐾)
7 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 eqid 2731 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
9 eqid 2731 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
105, 6, 7, 8, 9pmapjlln1 39894 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
111, 2, 3, 4, 10syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
121hllatd 39403 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
135, 7atbase 39328 . . . . . . 7 (𝑃𝐴𝑃𝐵)
143, 13syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
155, 7atbase 39328 . . . . . . 7 (𝑄𝐴𝑄𝐵)
164, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
175, 6latjcl 18340 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
1812, 14, 16, 17syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
19 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑌𝐵)
20 atmod.l . . . . . 6 = (le‘𝐾)
21 atmod.m . . . . . 6 = (meet‘𝐾)
225, 20, 6, 21, 8, 9hlmod1i 39895 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
231, 2, 18, 19, 22syl13anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
2411, 23mpan2d 694 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑋 𝑌 → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
25243impia 1117 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
2625eqcomd 2737 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  meetcmee 18213  Latclat 18332  Atomscatm 39302  HLchlt 39389  pmapcpmap 39536  +𝑃cpadd 39834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361  df-hlat 39390  df-psubsp 39542  df-pmap 39543  df-padd 39835
This theorem is referenced by:  llnmod2i2  39902  dalawlem12  39921
  Copyright terms: Public domain W3C validator