Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnmod1i2 Structured version   Visualization version   GIF version

Theorem llnmod1i2 37801
Description: Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
llnmod1i2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))

Proof of Theorem llnmod1i2
StepHypRef Expression
1 simpl1 1189 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
2 simpl2 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
3 simprl 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
4 simprr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
5 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
6 atmod.j . . . . . 6 = (join‘𝐾)
7 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
8 eqid 2738 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
9 eqid 2738 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
105, 6, 7, 8, 9pmapjlln1 37796 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
111, 2, 3, 4, 10syl13anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄))))
121hllatd 37305 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
135, 7atbase 37230 . . . . . . 7 (𝑃𝐴𝑃𝐵)
143, 13syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
155, 7atbase 37230 . . . . . . 7 (𝑄𝐴𝑄𝐵)
164, 15syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
175, 6latjcl 18072 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
1812, 14, 16, 17syl3anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
19 simpl3 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → 𝑌𝐵)
20 atmod.l . . . . . 6 = (le‘𝐾)
21 atmod.m . . . . . 6 = (meet‘𝐾)
225, 20, 6, 21, 8, 9hlmod1i 37797 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑌𝐵)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
231, 2, 18, 19, 22syl13anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → ((𝑋 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 (𝑃 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃𝐾)((pmap‘𝐾)‘(𝑃 𝑄)))) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
2411, 23mpan2d 690 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴)) → (𝑋 𝑌 → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌))))
25243impia 1115 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
2625eqcomd 2744 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  pmapcpmap 37438  +𝑃cpadd 37736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737
This theorem is referenced by:  llnmod2i2  37804  dalawlem12  37823
  Copyright terms: Public domain W3C validator