| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnmod1i2 | Structured version Visualization version GIF version | ||
| Description: Version of modular law pmod1i 39815 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
| atmod.l | ⊢ ≤ = (le‘𝐾) |
| atmod.j | ⊢ ∨ = (join‘𝐾) |
| atmod.m | ⊢ ∧ = (meet‘𝐾) |
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| llnmod1i2 | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
| 2 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
| 3 | simprl 770 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
| 4 | simprr 772 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
| 5 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 7 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
| 10 | 5, 6, 7, 8, 9 | pmapjlln1 39822 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
| 11 | 1, 2, 3, 4, 10 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
| 12 | 1 | hllatd 39330 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 13 | 5, 7 | atbase 39255 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 14 | 3, 13 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
| 15 | 5, 7 | atbase 39255 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 16 | 4, 15 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
| 17 | 5, 6 | latjcl 18374 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 19 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑌 ∈ 𝐵) | |
| 20 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 21 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 22 | 5, 20, 6, 21, 8, 9 | hlmod1i 39823 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
| 23 | 1, 2, 18, 19, 22 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
| 24 | 11, 23 | mpan2d 694 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
| 25 | 24 | 3impia 1117 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌))) |
| 26 | 25 | eqcomd 2735 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 lecple 17203 joincjn 18248 meetcmee 18249 Latclat 18366 Atomscatm 39229 HLchlt 39316 pmapcpmap 39464 +𝑃cpadd 39762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-lat 18367 df-clat 18434 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-psubsp 39470 df-pmap 39471 df-padd 39763 |
| This theorem is referenced by: llnmod2i2 39830 dalawlem12 39849 |
| Copyright terms: Public domain | W3C validator |