Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnmod1i2 | Structured version Visualization version GIF version |
Description: Version of modular law pmod1i 37888 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
llnmod1i2 | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | simpl2 1190 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | |
3 | simprl 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | simprr 769 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
5 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
6 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
7 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | eqid 2733 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
9 | eqid 2733 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
10 | 5, 6, 7, 8, 9 | pmapjlln1 37895 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
11 | 1, 2, 3, 4, 10 | syl13anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) |
12 | 1 | hllatd 37404 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
13 | 5, 7 | atbase 37329 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
14 | 3, 13 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
15 | 5, 7 | atbase 37329 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
16 | 4, 15 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
17 | 5, 6 | latjcl 18185 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
18 | 12, 14, 16, 17 | syl3anc 1369 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
19 | simpl3 1191 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑌 ∈ 𝐵) | |
20 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
21 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
22 | 5, 20, 6, 21, 8, 9 | hlmod1i 37896 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
23 | 1, 2, 18, 19, 22 | syl13anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑋 ∨ (𝑃 ∨ 𝑄))) = (((pmap‘𝐾)‘𝑋)(+𝑃‘𝐾)((pmap‘𝐾)‘(𝑃 ∨ 𝑄)))) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
24 | 11, 23 | mpan2d 690 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ≤ 𝑌 → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)))) |
25 | 24 | 3impia 1115 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌) = (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌))) |
26 | 25 | eqcomd 2739 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 Basecbs 16940 lecple 16997 joincjn 18057 meetcmee 18058 Latclat 18177 Atomscatm 37303 HLchlt 37390 pmapcpmap 37537 +𝑃cpadd 37835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-1st 7851 df-2nd 7852 df-proset 18041 df-poset 18059 df-plt 18076 df-lub 18092 df-glb 18093 df-join 18094 df-meet 18095 df-p0 18171 df-lat 18178 df-clat 18245 df-oposet 37216 df-ol 37218 df-oml 37219 df-covers 37306 df-ats 37307 df-atl 37338 df-cvlat 37362 df-hlat 37391 df-psubsp 37543 df-pmap 37544 df-padd 37836 |
This theorem is referenced by: llnmod2i2 37903 dalawlem12 37922 |
Copyright terms: Public domain | W3C validator |