MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldbday Structured version   Visualization version   GIF version

Theorem oldbday 27633
Description: A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
oldbday ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday 𝑋) ∈ 𝐴))

Proof of Theorem oldbday
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oldbdayim 27621 . 2 (𝑋 ∈ ( O ‘𝐴) → ( bday 𝑋) ∈ 𝐴)
2 simpl 482 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → 𝐴 ∈ On)
3 onelon 6389 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏 ∈ On)
4 madebday 27632 . . . . . . . 8 ((𝑏 ∈ On ∧ 𝑦 No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday 𝑦) ⊆ 𝑏))
54biimprd 247 . . . . . . 7 ((𝑏 ∈ On ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
63, 5sylan 579 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏𝐴) ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
76anasss 466 . . . . 5 ((𝐴 ∈ On ∧ (𝑏𝐴𝑦 No )) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
87ralrimivva 3199 . . . 4 (𝐴 ∈ On → ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
98adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
10 simpr 484 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → 𝑋 No )
11 madebdaylemold 27630 . . 3 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
122, 9, 10, 11syl3anc 1370 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
131, 12impbid2 225 1 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday 𝑋) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wral 3060  wss 3948  Oncon0 6364  cfv 6543   No csur 27380   bday cbday 27382   M cmade 27575   O cold 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-1o 8469  df-2o 8470  df-no 27383  df-slt 27384  df-bday 27385  df-sslt 27520  df-scut 27522  df-made 27580  df-old 27581  df-left 27583  df-right 27584
This theorem is referenced by:  newbday  27634  0elold  27641  cofcutr  27650  lrrecval2  27663  addsproplem2  27693  addsproplem4  27695  addsproplem5  27696  addsproplem6  27697  negsproplem4  27745  negsproplem5  27746  negsproplem6  27747  mulsproplem12  27823  mulsproplem13  27824  mulsproplem14  27825  sltonold  27927
  Copyright terms: Public domain W3C validator