MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldbday Structured version   Visualization version   GIF version

Theorem oldbday 27866
Description: A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
oldbday ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday 𝑋) ∈ 𝐴))

Proof of Theorem oldbday
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oldbdayim 27854 . 2 (𝑋 ∈ ( O ‘𝐴) → ( bday 𝑋) ∈ 𝐴)
2 simpl 482 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → 𝐴 ∈ On)
3 onelon 6339 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏 ∈ On)
4 madebday 27865 . . . . . . . 8 ((𝑏 ∈ On ∧ 𝑦 No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday 𝑦) ⊆ 𝑏))
54biimprd 248 . . . . . . 7 ((𝑏 ∈ On ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
63, 5sylan 580 . . . . . 6 (((𝐴 ∈ On ∧ 𝑏𝐴) ∧ 𝑦 No ) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
76anasss 466 . . . . 5 ((𝐴 ∈ On ∧ (𝑏𝐴𝑦 No )) → (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
87ralrimivva 3176 . . . 4 (𝐴 ∈ On → ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
98adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)))
10 simpr 484 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → 𝑋 No )
11 madebdaylemold 27863 . . 3 ((𝐴 ∈ On ∧ ∀𝑏𝐴𝑦 No (( bday 𝑦) ⊆ 𝑏𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
122, 9, 10, 11syl3anc 1373 . 2 ((𝐴 ∈ On ∧ 𝑋 No ) → (( bday 𝑋) ∈ 𝐴𝑋 ∈ ( O ‘𝐴)))
131, 12impbid2 226 1 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday 𝑋) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wral 3048  wss 3898  Oncon0 6314  cfv 6489   No csur 27598   bday cbday 27600   M cmade 27803   O cold 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-no 27601  df-slt 27602  df-bday 27603  df-sslt 27741  df-scut 27743  df-made 27808  df-old 27809  df-left 27811  df-right 27812
This theorem is referenced by:  newbday  27867  0elold  27875  cofcutr  27888  lrrecval2  27903  addsproplem2  27933  addsproplem4  27935  addsproplem5  27936  addsproplem6  27937  negsproplem4  27993  negsproplem5  27994  negsproplem6  27995  mulsproplem12  28086  mulsproplem13  28087  mulsproplem14  28088  sltonold  28218  onscutlt  28221  onnolt  28223  onslt  28224  onsiso  28225  n0ssold  28301  onsfi  28303
  Copyright terms: Public domain W3C validator