| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldbday | Structured version Visualization version GIF version | ||
| Description: A surreal is part of the set older than ordinal 𝐴 iff its birthday is less than 𝐴. Remark in [Conway] p. 29. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldbday | ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldbdayim 27854 | . 2 ⊢ (𝑋 ∈ ( O ‘𝐴) → ( bday ‘𝑋) ∈ 𝐴) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → 𝐴 ∈ On) | |
| 3 | onelon 6339 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ On) | |
| 4 | madebday 27865 | . . . . . . . 8 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (𝑦 ∈ ( M ‘𝑏) ↔ ( bday ‘𝑦) ⊆ 𝑏)) | |
| 5 | 4 | biimprd 248 | . . . . . . 7 ⊢ ((𝑏 ∈ On ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 6 | 3, 5 | sylan 580 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) ∧ 𝑦 ∈ No ) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 7 | 6 | anasss 466 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (𝑏 ∈ 𝐴 ∧ 𝑦 ∈ No )) → (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 8 | 7 | ralrimivva 3176 | . . . 4 ⊢ (𝐴 ∈ On → ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏))) |
| 10 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → 𝑋 ∈ No ) | |
| 11 | madebdaylemold 27863 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∀𝑏 ∈ 𝐴 ∀𝑦 ∈ No (( bday ‘𝑦) ⊆ 𝑏 → 𝑦 ∈ ( M ‘𝑏)) ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) | |
| 12 | 2, 9, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (( bday ‘𝑋) ∈ 𝐴 → 𝑋 ∈ ( O ‘𝐴))) |
| 13 | 1, 12 | impbid2 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( O ‘𝐴) ↔ ( bday ‘𝑋) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 Oncon0 6314 ‘cfv 6489 No csur 27598 bday cbday 27600 M cmade 27803 O cold 27804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-no 27601 df-slt 27602 df-bday 27603 df-sslt 27741 df-scut 27743 df-made 27808 df-old 27809 df-left 27811 df-right 27812 |
| This theorem is referenced by: newbday 27867 0elold 27875 cofcutr 27888 lrrecval2 27903 addsproplem2 27933 addsproplem4 27935 addsproplem5 27936 addsproplem6 27937 negsproplem4 27993 negsproplem5 27994 negsproplem6 27995 mulsproplem12 28086 mulsproplem13 28087 mulsproplem14 28088 sltonold 28218 onscutlt 28221 onnolt 28223 onslt 28224 onsiso 28225 n0ssold 28301 onsfi 28303 |
| Copyright terms: Public domain | W3C validator |