![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maducoeval | Structured version Visualization version GIF version |
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
madufval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madufval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
madufval.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
madufval.b | ⊢ 𝐵 = (Base‘𝐴) |
madufval.o | ⊢ 1 = (1r‘𝑅) |
madufval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
maducoeval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madufval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | madufval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | madufval.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | madufval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
5 | madufval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | madufval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maduval 22450 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
8 | 7 | 3ad2ant1 1130 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
9 | simp1r 1195 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑗 = 𝐻) | |
10 | 9 | eqeq2d 2735 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑗 ↔ 𝑘 = 𝐻)) |
11 | simp1l 1194 | . . . . . . . 8 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑖 = 𝐼) | |
12 | 11 | eqeq2d 2735 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑙 = 𝑖 ↔ 𝑙 = 𝐼)) |
13 | 12 | ifbid 4543 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 )) |
14 | 10, 13 | ifbieq1d 4544 | . . . . 5 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
15 | 14 | mpoeq3dva 7478 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) |
16 | 15 | fveq2d 6885 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
17 | 16 | adantl 481 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐻)) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
18 | simp2 1134 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
19 | simp3 1135 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐻 ∈ 𝑁) | |
20 | fvexd 6896 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V) | |
21 | 8, 17, 18, 19, 20 | ovmpod 7552 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ifcif 4520 ‘cfv 6533 (class class class)co 7401 ∈ cmpo 7403 Basecbs 17140 0gc0g 17381 1rcur 20071 Mat cmat 22217 maDet cmdat 22396 maAdju cmadu 22444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-1cn 11163 ax-addcl 11165 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-nn 12209 df-slot 17111 df-ndx 17123 df-base 17141 df-mat 22218 df-madu 22446 |
This theorem is referenced by: maducoeval2 22452 madugsum 22455 maducoevalmin1 22464 |
Copyright terms: Public domain | W3C validator |