MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval Structured version   Visualization version   GIF version

Theorem maducoeval 22496
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
maducoeval ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐵(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑘,𝑙)   𝐽(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem maducoeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 madufval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 madufval.j . . . 4 𝐽 = (𝑁 maAdju 𝑅)
4 madufval.b . . . 4 𝐵 = (Base‘𝐴)
5 madufval.o . . . 4 1 = (1r𝑅)
6 madufval.z . . . 4 0 = (0g𝑅)
71, 2, 3, 4, 5, 6maduval 22495 . . 3 (𝑀𝐵 → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
873ad2ant1 1130 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
9 simp1r 1195 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑗 = 𝐻)
109eqeq2d 2737 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑗𝑘 = 𝐻))
11 simp1l 1194 . . . . . . . 8 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑖 = 𝐼)
1211eqeq2d 2737 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑙 = 𝑖𝑙 = 𝐼))
1312ifbid 4546 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 ))
1410, 13ifbieq1d 4547 . . . . 5 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
1514mpoeq3dva 7482 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
1615fveq2d 6889 . . 3 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
1716adantl 481 . 2 (((𝑀𝐵𝐼𝑁𝐻𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐻)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
18 simp2 1134 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐼𝑁)
19 simp3 1135 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐻𝑁)
20 fvexd 6900 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V)
218, 17, 18, 19, 20ovmpod 7556 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3468  ifcif 4523  cfv 6537  (class class class)co 7405  cmpo 7407  Basecbs 17153  0gc0g 17394  1rcur 20086   Mat cmat 22262   maDet cmdat 22441   maAdju cmadu 22489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-nn 12217  df-slot 17124  df-ndx 17136  df-base 17154  df-mat 22263  df-madu 22491
This theorem is referenced by:  maducoeval2  22497  madugsum  22500  maducoevalmin1  22509
  Copyright terms: Public domain W3C validator