MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval Structured version   Visualization version   GIF version

Theorem maducoeval 22554
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
maducoeval ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐵(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑘,𝑙)   𝐽(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem maducoeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 madufval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 madufval.j . . . 4 𝐽 = (𝑁 maAdju 𝑅)
4 madufval.b . . . 4 𝐵 = (Base‘𝐴)
5 madufval.o . . . 4 1 = (1r𝑅)
6 madufval.z . . . 4 0 = (0g𝑅)
71, 2, 3, 4, 5, 6maduval 22553 . . 3 (𝑀𝐵 → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
873ad2ant1 1133 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
9 simp1r 1199 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑗 = 𝐻)
109eqeq2d 2742 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑗𝑘 = 𝐻))
11 simp1l 1198 . . . . . . . 8 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑖 = 𝐼)
1211eqeq2d 2742 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑙 = 𝑖𝑙 = 𝐼))
1312ifbid 4496 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 ))
1410, 13ifbieq1d 4497 . . . . 5 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
1514mpoeq3dva 7423 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
1615fveq2d 6826 . . 3 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
1716adantl 481 . 2 (((𝑀𝐵𝐼𝑁𝐻𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐻)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
18 simp2 1137 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐼𝑁)
19 simp3 1138 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐻𝑁)
20 fvexd 6837 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V)
218, 17, 18, 19, 20ovmpod 7498 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4472  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  0gc0g 17343  1rcur 20099   Mat cmat 22322   maDet cmdat 22499   maAdju cmadu 22547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-slot 17093  df-ndx 17105  df-base 17121  df-mat 22323  df-madu 22549
This theorem is referenced by:  maducoeval2  22555  madugsum  22558  maducoevalmin1  22567
  Copyright terms: Public domain W3C validator