Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > maducoeval | Structured version Visualization version GIF version |
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
madufval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madufval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
madufval.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
madufval.b | ⊢ 𝐵 = (Base‘𝐴) |
madufval.o | ⊢ 1 = (1r‘𝑅) |
madufval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
maducoeval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madufval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | madufval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | madufval.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | madufval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
5 | madufval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | madufval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maduval 21535 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
8 | 7 | 3ad2ant1 1135 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
9 | simp1r 1200 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑗 = 𝐻) | |
10 | 9 | eqeq2d 2748 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑗 ↔ 𝑘 = 𝐻)) |
11 | simp1l 1199 | . . . . . . . 8 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑖 = 𝐼) | |
12 | 11 | eqeq2d 2748 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑙 = 𝑖 ↔ 𝑙 = 𝐼)) |
13 | 12 | ifbid 4462 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 )) |
14 | 10, 13 | ifbieq1d 4463 | . . . . 5 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
15 | 14 | mpoeq3dva 7288 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) |
16 | 15 | fveq2d 6721 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
17 | 16 | adantl 485 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐻)) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
18 | simp2 1139 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
19 | simp3 1140 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐻 ∈ 𝑁) | |
20 | fvexd 6732 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V) | |
21 | 8, 17, 18, 19, 20 | ovmpod 7361 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ifcif 4439 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 Basecbs 16760 0gc0g 16944 1rcur 19516 Mat cmat 21304 maDet cmdat 21481 maAdju cmadu 21529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 df-slot 16735 df-ndx 16745 df-base 16761 df-mat 21305 df-madu 21531 |
This theorem is referenced by: maducoeval2 21537 madugsum 21540 maducoevalmin1 21549 |
Copyright terms: Public domain | W3C validator |