MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval Structured version   Visualization version   GIF version

Theorem maducoeval 22559
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
maducoeval ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙   𝑘,𝑀,𝑙   𝑘,𝐼,𝑙   𝑘,𝐻,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   𝐵(𝑘,𝑙)   𝐷(𝑘,𝑙)   1 (𝑘,𝑙)   𝐽(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem maducoeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 madufval.d . . . 4 𝐷 = (𝑁 maDet 𝑅)
3 madufval.j . . . 4 𝐽 = (𝑁 maAdju 𝑅)
4 madufval.b . . . 4 𝐵 = (Base‘𝐴)
5 madufval.o . . . 4 1 = (1r𝑅)
6 madufval.z . . . 4 0 = (0g𝑅)
71, 2, 3, 4, 5, 6maduval 22558 . . 3 (𝑀𝐵 → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
873ad2ant1 1130 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐽𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))))
9 simp1r 1195 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑗 = 𝐻)
109eqeq2d 2736 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑘 = 𝑗𝑘 = 𝐻))
11 simp1l 1194 . . . . . . . 8 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → 𝑖 = 𝐼)
1211eqeq2d 2736 . . . . . . 7 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → (𝑙 = 𝑖𝑙 = 𝐼))
1312ifbid 4547 . . . . . 6 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 ))
1410, 13ifbieq1d 4548 . . . . 5 (((𝑖 = 𝐼𝑗 = 𝐻) ∧ 𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))
1514mpoeq3dva 7494 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))
1615fveq2d 6896 . . 3 ((𝑖 = 𝐼𝑗 = 𝐻) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
1716adantl 480 . 2 (((𝑀𝐵𝐼𝑁𝐻𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝐻)) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
18 simp2 1134 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐼𝑁)
19 simp3 1135 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → 𝐻𝑁)
20 fvexd 6907 . 2 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V)
218, 17, 18, 19, 20ovmpod 7570 1 ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3463  ifcif 4524  cfv 6543  (class class class)co 7416  cmpo 7418  Basecbs 17179  0gc0g 17420  1rcur 20125   Mat cmat 22325   maDet cmdat 22504   maAdju cmadu 22552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12243  df-slot 17150  df-ndx 17162  df-base 17180  df-mat 22326  df-madu 22554
This theorem is referenced by:  maducoeval2  22560  madugsum  22563  maducoevalmin1  22572
  Copyright terms: Public domain W3C validator