![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maducoeval | Structured version Visualization version GIF version |
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
madufval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madufval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
madufval.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
madufval.b | ⊢ 𝐵 = (Base‘𝐴) |
madufval.o | ⊢ 1 = (1r‘𝑅) |
madufval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
maducoeval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madufval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | madufval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
3 | madufval.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
4 | madufval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
5 | madufval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | madufval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | maduval 22139 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
9 | simp1r 1198 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑗 = 𝐻) | |
10 | 9 | eqeq2d 2743 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘 = 𝑗 ↔ 𝑘 = 𝐻)) |
11 | simp1l 1197 | . . . . . . . 8 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑖 = 𝐼) | |
12 | 11 | eqeq2d 2743 | . . . . . . 7 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑙 = 𝑖 ↔ 𝑙 = 𝐼)) |
13 | 12 | ifbid 4551 | . . . . . 6 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝐼, 1 , 0 )) |
14 | 10, 13 | ifbieq1d 4552 | . . . . 5 ⊢ (((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)) = if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) |
15 | 14 | mpoeq3dva 7485 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) |
16 | 15 | fveq2d 6895 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐻) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
17 | 16 | adantl 482 | . 2 ⊢ (((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐻)) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
18 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
19 | simp3 1138 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → 𝐻 ∈ 𝑁) | |
20 | fvexd 6906 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)))) ∈ V) | |
21 | 8, 17, 18, 19, 20 | ovmpod 7559 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐼 ∈ 𝑁 ∧ 𝐻 ∈ 𝑁) → (𝐼(𝐽‘𝑀)𝐻) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ifcif 4528 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 Basecbs 17143 0gc0g 17384 1rcur 20003 Mat cmat 21906 maDet cmdat 22085 maAdju cmadu 22133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-slot 17114 df-ndx 17126 df-base 17144 df-mat 21907 df-madu 22135 |
This theorem is referenced by: maducoeval2 22141 madugsum 22144 maducoevalmin1 22153 |
Copyright terms: Public domain | W3C validator |