Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvcl Structured version   Visualization version   GIF version

Theorem marepvcl 21172
 Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvcl ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵)

Proof of Theorem marepvcl
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvcl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 marepvcl.b . . . 4 𝐵 = (Base‘𝐴)
3 eqid 2822 . . . 4 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
4 marepvcl.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
51, 2, 3, 4marepvval 21170 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
65adantl 485 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
7 eqid 2822 . . 3 (Base‘𝑅) = (Base‘𝑅)
81, 2matrcl 21015 . . . . . 6 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 498 . . . . 5 (𝑀𝐵𝑁 ∈ Fin)
1093ad2ant1 1130 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
1110adantl 485 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑁 ∈ Fin)
12 simpl 486 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑅 ∈ Ring)
13 elmapi 8415 . . . . . . . . . 10 (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝐶:𝑁⟶(Base‘𝑅))
14 ffvelrn 6831 . . . . . . . . . . 11 ((𝐶:𝑁⟶(Base‘𝑅) ∧ 𝑖𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
1514ex 416 . . . . . . . . . 10 (𝐶:𝑁⟶(Base‘𝑅) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1613, 15syl 17 . . . . . . . . 9 (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1716, 4eleq2s 2932 . . . . . . . 8 (𝐶𝑉 → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
18173ad2ant2 1131 . . . . . . 7 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
1918adantl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → (𝑖𝑁 → (𝐶𝑖) ∈ (Base‘𝑅)))
2019imp 410 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
21203adant3 1129 . . . 4 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝐶𝑖) ∈ (Base‘𝑅))
22 simp2 1134 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
23 simp3 1135 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
242eleq2i 2905 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
2524biimpi 219 . . . . . . . 8 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
26253ad2ant1 1130 . . . . . . 7 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑀 ∈ (Base‘𝐴))
2726adantl 485 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝑀 ∈ (Base‘𝐴))
28273ad2ant1 1130 . . . . 5 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → 𝑀 ∈ (Base‘𝐴))
291, 7matecl 21028 . . . . 5 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
3022, 23, 28, 29syl3anc 1368 . . . 4 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
3121, 30ifcld 4484 . . 3 (((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)) ∈ (Base‘𝑅))
321, 7, 2, 11, 12, 31matbas2d 21026 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ 𝐵)
336, 32eqeltrd 2914 1 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  Vcvv 3469  ifcif 4439  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142   ↑m cmap 8393  Fincfn 8496  Basecbs 16474  Ringcrg 19288   Mat cmat 21010   matRepV cmatrepV 21160 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-ot 4548  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-hom 16580  df-cco 16581  df-0g 16706  df-prds 16712  df-pws 16714  df-sra 19935  df-rgmod 19936  df-dsmm 20419  df-frlm 20434  df-mat 21011  df-marepv 21162 This theorem is referenced by:  ma1repvcl  21173
 Copyright terms: Public domain W3C validator