![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marepvcl | Structured version Visualization version GIF version |
Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
Ref | Expression |
---|---|
marepvcl | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | eqid 2736 | . . . 4 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
4 | marepvcl.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
5 | 1, 2, 3, 4 | marepvval 21916 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
6 | 5 | adantl 482 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
7 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 1, 2 | matrcl 21759 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | simpld 495 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
11 | 10 | adantl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑁 ∈ Fin) |
12 | simpl 483 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
13 | elmapi 8787 | . . . . . . . . . 10 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝐶:𝑁⟶(Base‘𝑅)) | |
14 | ffvelcdm 7032 | . . . . . . . . . . 11 ⊢ ((𝐶:𝑁⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) | |
15 | 14 | ex 413 | . . . . . . . . . 10 ⊢ (𝐶:𝑁⟶(Base‘𝑅) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
16 | 13, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
17 | 16, 4 | eleq2s 2856 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
18 | 17 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
19 | 18 | adantl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
20 | 19 | imp 407 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
21 | 20 | 3adant3 1132 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
22 | simp2 1137 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
23 | simp3 1138 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
24 | 2 | eleq2i 2829 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
25 | 24 | biimpi 215 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
26 | 25 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
27 | 26 | adantl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
29 | 1, 7 | matecl 21774 | . . . . 5 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
30 | 22, 23, 28, 29 | syl3anc 1371 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
31 | 21, 30 | ifcld 4532 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ (Base‘𝑅)) |
32 | 1, 7, 2, 11, 12, 31 | matbas2d 21772 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ 𝐵) |
33 | 6, 32 | eqeltrd 2838 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ifcif 4486 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ↑m cmap 8765 Fincfn 8883 Basecbs 17083 Ringcrg 19964 Mat cmat 21754 matRepV cmatrepV 21906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-ot 4595 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-sra 20633 df-rgmod 20634 df-dsmm 21138 df-frlm 21153 df-mat 21755 df-marepv 21908 |
This theorem is referenced by: ma1repvcl 21919 |
Copyright terms: Public domain | W3C validator |