| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marepvcl | Structured version Visualization version GIF version | ||
| Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| Ref | Expression |
|---|---|
| marepvcl | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marepvcl.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marepvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | eqid 2736 | . . . 4 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
| 4 | marepvcl.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 5 | 1, 2, 3, 4 | marepvval 22510 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
| 7 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 1, 2 | matrcl 22355 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 9 | 8 | simpld 494 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 10 | 9 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 12 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 13 | elmapi 8868 | . . . . . . . . . 10 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → 𝐶:𝑁⟶(Base‘𝑅)) | |
| 14 | ffvelcdm 7076 | . . . . . . . . . . 11 ⊢ ((𝐶:𝑁⟶(Base‘𝑅) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) | |
| 15 | 14 | ex 412 | . . . . . . . . . 10 ⊢ (𝐶:𝑁⟶(Base‘𝑅) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
| 16 | 13, 15 | syl 17 | . . . . . . . . 9 ⊢ (𝐶 ∈ ((Base‘𝑅) ↑m 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
| 17 | 16, 4 | eleq2s 2853 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
| 18 | 17 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁 → (𝐶‘𝑖) ∈ (Base‘𝑅))) |
| 20 | 19 | imp 406 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
| 21 | 20 | 3adant3 1132 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐶‘𝑖) ∈ (Base‘𝑅)) |
| 22 | simp2 1137 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 23 | simp3 1138 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 24 | 2 | eleq2i 2827 | . . . . . . . . 9 ⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
| 25 | 24 | biimpi 216 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 26 | 25 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 27 | 26 | adantl 481 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . 5 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 29 | 1, 7 | matecl 22368 | . . . . 5 ⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 30 | 22, 23, 28, 29 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
| 31 | 21, 30 | ifcld 4552 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)) ∈ (Base‘𝑅)) |
| 32 | 1, 7, 2, 11, 12, 31 | matbas2d 22366 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ 𝐵) |
| 33 | 6, 32 | eqeltrd 2835 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ((𝑀(𝑁 matRepV 𝑅)𝐶)‘𝐾) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ifcif 4505 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ↑m cmap 8845 Fincfn 8964 Basecbs 17233 Ringcrg 20198 Mat cmat 22350 matRepV cmatrepV 22500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-prds 17466 df-pws 17468 df-sra 21136 df-rgmod 21137 df-dsmm 21697 df-frlm 21712 df-mat 22351 df-marepv 22502 |
| This theorem is referenced by: ma1repvcl 22513 |
| Copyright terms: Public domain | W3C validator |