MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzcl Structured version   Visualization version   GIF version

Theorem gsummptfzcl 19848
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsummptfzcl.b 𝐵 = (Base‘𝐺)
gsummptfzcl.g (𝜑𝐺 ∈ Mnd)
gsummptfzcl.n (𝜑𝑁 ∈ (ℤ𝑀))
gsummptfzcl.i (𝜑𝐼 = (𝑀...𝑁))
gsummptfzcl.e (𝜑 → ∀𝑖𝐼 𝑋𝐵)
Assertion
Ref Expression
gsummptfzcl (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
Distinct variable groups:   𝑖,𝐼   𝐵,𝑖
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑀(𝑖)   𝑁(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptfzcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummptfzcl.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
3 gsummptfzcl.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummptfzcl.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 gsummptfzcl.e . . . 4 (𝜑 → ∀𝑖𝐼 𝑋𝐵)
6 eqid 2729 . . . . . 6 (𝑖𝐼𝑋) = (𝑖𝐼𝑋)
76fmpt 7044 . . . . 5 (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):𝐼𝐵)
8 gsummptfzcl.i . . . . . 6 (𝜑𝐼 = (𝑀...𝑁))
98feq2d 6636 . . . . 5 (𝜑 → ((𝑖𝐼𝑋):𝐼𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
107, 9bitrid 283 . . . 4 (𝜑 → (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
115, 10mpbid 232 . . 3 (𝜑 → (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 11gsumval2 18560 . 2 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) = (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁))
135adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ∀𝑖𝐼 𝑋𝐵)
1413, 7sylib 218 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑖𝐼𝑋):𝐼𝐵)
158eqcomd 2735 . . . . . 6 (𝜑 → (𝑀...𝑁) = 𝐼)
1615eleq2d 2814 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝐼))
1716biimpa 476 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐼)
1814, 17ffvelcdmd 7019 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑖𝐼𝑋)‘𝑥) ∈ 𝐵)
193adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
20 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
21 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
221, 2mndcl 18616 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2319, 20, 21, 22syl3anc 1373 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
244, 18, 23seqcl 13929 . 2 (𝜑 → (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁) ∈ 𝐵)
2512, 24eqeltrd 2828 1 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5173  wf 6478  cfv 6482  (class class class)co 7349  cuz 12735  ...cfz 13410  seqcseq 13908  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344  Mndcmnd 18608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609
This theorem is referenced by:  m2detleiblem2  22513
  Copyright terms: Public domain W3C validator