MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfzcl Structured version   Visualization version   GIF version

Theorem gsummptfzcl 19955
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.)
Hypotheses
Ref Expression
gsummptfzcl.b 𝐵 = (Base‘𝐺)
gsummptfzcl.g (𝜑𝐺 ∈ Mnd)
gsummptfzcl.n (𝜑𝑁 ∈ (ℤ𝑀))
gsummptfzcl.i (𝜑𝐼 = (𝑀...𝑁))
gsummptfzcl.e (𝜑 → ∀𝑖𝐼 𝑋𝐵)
Assertion
Ref Expression
gsummptfzcl (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
Distinct variable groups:   𝑖,𝐼   𝐵,𝑖
Allowed substitution hints:   𝜑(𝑖)   𝐺(𝑖)   𝑀(𝑖)   𝑁(𝑖)   𝑋(𝑖)

Proof of Theorem gsummptfzcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsummptfzcl.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2736 . . 3 (+g𝐺) = (+g𝐺)
3 gsummptfzcl.g . . 3 (𝜑𝐺 ∈ Mnd)
4 gsummptfzcl.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
5 gsummptfzcl.e . . . 4 (𝜑 → ∀𝑖𝐼 𝑋𝐵)
6 eqid 2736 . . . . . 6 (𝑖𝐼𝑋) = (𝑖𝐼𝑋)
76fmpt 7105 . . . . 5 (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):𝐼𝐵)
8 gsummptfzcl.i . . . . . 6 (𝜑𝐼 = (𝑀...𝑁))
98feq2d 6697 . . . . 5 (𝜑 → ((𝑖𝐼𝑋):𝐼𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
107, 9bitrid 283 . . . 4 (𝜑 → (∀𝑖𝐼 𝑋𝐵 ↔ (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵))
115, 10mpbid 232 . . 3 (𝜑 → (𝑖𝐼𝑋):(𝑀...𝑁)⟶𝐵)
121, 2, 3, 4, 11gsumval2 18669 . 2 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) = (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁))
135adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ∀𝑖𝐼 𝑋𝐵)
1413, 7sylib 218 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑖𝐼𝑋):𝐼𝐵)
158eqcomd 2742 . . . . . 6 (𝜑 → (𝑀...𝑁) = 𝐼)
1615eleq2d 2821 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝐼))
1716biimpa 476 . . . 4 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐼)
1814, 17ffvelcdmd 7080 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑖𝐼𝑋)‘𝑥) ∈ 𝐵)
193adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Mnd)
20 simprl 770 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
21 simprr 772 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
221, 2mndcl 18725 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
2319, 20, 21, 22syl3anc 1373 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
244, 18, 23seqcl 14045 . 2 (𝜑 → (seq𝑀((+g𝐺), (𝑖𝐼𝑋))‘𝑁) ∈ 𝐵)
2512, 24eqeltrd 2835 1 (𝜑 → (𝐺 Σg (𝑖𝐼𝑋)) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cuz 12857  ...cfz 13529  seqcseq 14024  Basecbs 17233  +gcplusg 17276   Σg cgsu 17459  Mndcmnd 18717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718
This theorem is referenced by:  m2detleiblem2  22571
  Copyright terms: Public domain W3C validator