![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfzcl | Structured version Visualization version GIF version |
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
Ref | Expression |
---|---|
gsummptfzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsummptfzcl.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
gsummptfzcl.i | ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) |
gsummptfzcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzcl | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2726 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | gsummptfzcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | gsummptfzcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | gsummptfzcl.e | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) | |
6 | eqid 2726 | . . . . . 6 ⊢ (𝑖 ∈ 𝐼 ↦ 𝑋) = (𝑖 ∈ 𝐼 ↦ 𝑋) | |
7 | 6 | fmpt 7105 | . . . . 5 ⊢ (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
8 | gsummptfzcl.i | . . . . . 6 ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) | |
9 | 8 | feq2d 6697 | . . . . 5 ⊢ (𝜑 → ((𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
10 | 7, 9 | bitrid 283 | . . . 4 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
11 | 5, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
12 | 1, 2, 3, 4, 11 | gsumval2 18619 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁)) |
13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
14 | 13, 7 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
15 | 8 | eqcomd 2732 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) = 𝐼) |
16 | 15 | eleq2d 2813 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ 𝐼)) |
17 | 16 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ 𝐼) |
18 | 14, 17 | ffvelcdmd 7081 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑖 ∈ 𝐼 ↦ 𝑋)‘𝑥) ∈ 𝐵) |
19 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
20 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
21 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
22 | 1, 2 | mndcl 18675 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
23 | 19, 20, 21, 22 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | 4, 18, 23 | seqcl 13993 | . 2 ⊢ (𝜑 → (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁) ∈ 𝐵) |
25 | 12, 24 | eqeltrd 2827 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ↦ cmpt 5224 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ℤ≥cuz 12826 ...cfz 13490 seqcseq 13972 Basecbs 17153 +gcplusg 17206 Σg cgsu 17395 Mndcmnd 18667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-seq 13973 df-0g 17396 df-gsum 17397 df-mgm 18573 df-sgrp 18652 df-mnd 18668 |
This theorem is referenced by: m2detleiblem2 22485 |
Copyright terms: Public domain | W3C validator |