![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfzcl | Structured version Visualization version GIF version |
Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
Ref | Expression |
---|---|
gsummptfzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfzcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsummptfzcl.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
gsummptfzcl.i | ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) |
gsummptfzcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
gsummptfzcl | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfzcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2800 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | gsummptfzcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
4 | gsummptfzcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | gsummptfzcl.e | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) | |
6 | eqid 2800 | . . . . . 6 ⊢ (𝑖 ∈ 𝐼 ↦ 𝑋) = (𝑖 ∈ 𝐼 ↦ 𝑋) | |
7 | 6 | fmpt 6607 | . . . . 5 ⊢ (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
8 | gsummptfzcl.i | . . . . . 6 ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) | |
9 | 8 | feq2d 6243 | . . . . 5 ⊢ (𝜑 → ((𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
10 | 7, 9 | syl5bb 275 | . . . 4 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
11 | 5, 10 | mpbid 224 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
12 | 1, 2, 3, 4, 11 | gsumval2 17594 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁)) |
13 | 5 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
14 | 13, 7 | sylib 210 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
15 | 8 | eqcomd 2806 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) = 𝐼) |
16 | 15 | eleq2d 2865 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ 𝐼)) |
17 | 16 | biimpa 469 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ 𝐼) |
18 | 14, 17 | ffvelrnd 6587 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑖 ∈ 𝐼 ↦ 𝑋)‘𝑥) ∈ 𝐵) |
19 | 3 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
20 | simprl 788 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
21 | simprr 790 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
22 | 1, 2 | mndcl 17615 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
23 | 19, 20, 21, 22 | syl3anc 1491 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
24 | 4, 18, 23 | seqcl 13074 | . 2 ⊢ (𝜑 → (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁) ∈ 𝐵) |
25 | 12, 24 | eqeltrd 2879 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ↦ cmpt 4923 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 ℤ≥cuz 11929 ...cfz 12579 seqcseq 13054 Basecbs 16183 +gcplusg 16266 Σg cgsu 16415 Mndcmnd 17608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-seq 13055 df-0g 16416 df-gsum 16417 df-mgm 17556 df-sgrp 17598 df-mnd 17609 |
This theorem is referenced by: m2detleiblem2 20759 |
Copyright terms: Public domain | W3C validator |