| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfzcl | Structured version Visualization version GIF version | ||
| Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| gsummptfzcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfzcl.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsummptfzcl.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| gsummptfzcl.i | ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) |
| gsummptfzcl.e | ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| gsummptfzcl | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfzcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | gsummptfzcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 4 | gsummptfzcl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 5 | gsummptfzcl.e | . . . 4 ⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (𝑖 ∈ 𝐼 ↦ 𝑋) = (𝑖 ∈ 𝐼 ↦ 𝑋) | |
| 7 | 6 | fmpt 7082 | . . . . 5 ⊢ (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
| 8 | gsummptfzcl.i | . . . . . 6 ⊢ (𝜑 → 𝐼 = (𝑀...𝑁)) | |
| 9 | 8 | feq2d 6672 | . . . . 5 ⊢ (𝜑 → ((𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
| 10 | 7, 9 | bitrid 283 | . . . 4 ⊢ (𝜑 → (∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵)) |
| 11 | 5, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ 𝑋):(𝑀...𝑁)⟶𝐵) |
| 12 | 1, 2, 3, 4, 11 | gsumval2 18613 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁)) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ∀𝑖 ∈ 𝐼 𝑋 ∈ 𝐵) |
| 14 | 13, 7 | sylib 218 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑖 ∈ 𝐼 ↦ 𝑋):𝐼⟶𝐵) |
| 15 | 8 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → (𝑀...𝑁) = 𝐼) |
| 16 | 15 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ 𝐼)) |
| 17 | 16 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑥 ∈ 𝐼) |
| 18 | 14, 17 | ffvelcdmd 7057 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑖 ∈ 𝐼 ↦ 𝑋)‘𝑥) ∈ 𝐵) |
| 19 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
| 20 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) | |
| 21 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 22 | 1, 2 | mndcl 18669 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 23 | 19, 20, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 24 | 4, 18, 23 | seqcl 13987 | . 2 ⊢ (𝜑 → (seq𝑀((+g‘𝐺), (𝑖 ∈ 𝐼 ↦ 𝑋))‘𝑁) ∈ 𝐵) |
| 25 | 12, 24 | eqeltrd 2828 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ 𝐼 ↦ 𝑋)) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 Basecbs 17179 +gcplusg 17220 Σg cgsu 17403 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: m2detleiblem2 22515 |
| Copyright terms: Public domain | W3C validator |