Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnn0cl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnncl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnncl.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulgnn0cl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnncl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mulgnncl.t | . 2 ⊢ · = (.g‘𝐺) | |
3 | eqid 2737 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | id 22 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mnd) | |
5 | ssidd 3924 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐵 ⊆ 𝐵) | |
6 | 1, 3 | mndcl 18181 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
7 | eqid 2737 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
8 | 1, 7 | mndidcl 18188 | . 2 ⊢ (𝐺 ∈ Mnd → (0g‘𝐺) ∈ 𝐵) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mulgnn0subcl 18505 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 ℕ0cn0 12090 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Mndcmnd 18173 .gcmg 18488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-seq 13575 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mulg 18489 |
This theorem is referenced by: mulgnn0dir 18521 mulgnn0ass 18527 mhmmulg 18532 pwsmulg 18536 cycsubm 18609 odmodnn0 18932 mulgmhm 19213 srgmulgass 19546 srgpcomp 19547 srgpcompp 19548 srgpcomppsc 19549 srgbinomlem1 19555 srgbinomlem2 19556 srgbinomlem4 19558 srgbinomlem 19559 lmodvsmmulgdi 19934 assamulgscmlem2 20860 mplcoe5lem 20996 mplcoe5 20997 psrbagev1 21035 psrbagev1OLD 21036 evlslem3 21040 ply1moncl 21192 coe1pwmul 21200 ply1coefsupp 21216 ply1coe 21217 gsummoncoe1 21225 lply1binomsc 21228 evl1expd 21261 evl1scvarpw 21279 evl1scvarpwval 21280 evl1gsummon 21281 pmatcollpwscmatlem1 21686 mply1topmatcllem 21700 mply1topmatcl 21702 pm2mpghm 21713 monmat2matmon 21721 pm2mp 21722 chpscmatgsumbin 21741 chpscmatgsummon 21742 chfacfscmulcl 21754 chfacfscmul0 21755 chfacfpmmulcl 21758 chfacfpmmul0 21759 cpmadugsumlemB 21771 cpmadugsumlemC 21772 cpmadugsumlemF 21773 cayhamlem2 21781 cayhamlem4 21785 deg1pw 25018 plypf1 25106 lgsqrlem2 26228 lgsqrlem3 26229 lgsqrlem4 26230 omndmul2 31057 omndmul3 31058 omndmul 31059 isarchi2 31158 freshmansdream 31203 frobrhm 31204 ply1chr 31383 pwsexpg 39980 evlsbagval 39985 evlsexpval 39986 mhphflem 39994 mhphf 39995 hbtlem4 40654 lmodvsmdi 45391 ply1mulgsumlem4 45403 ply1mulgsum 45404 |
Copyright terms: Public domain | W3C validator |