![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nna1iscard | Structured version Visualization version GIF version |
Description: For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
nna1iscard | ⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7873 | . . . 4 ⊢ (𝑁 ∈ ω → 𝑁 ∈ On) | |
2 | oa1suc 8548 | . . . 4 ⊢ (𝑁 ∈ On → (𝑁 +o 1o) = suc 𝑁) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 +o 1o) = suc 𝑁) |
4 | peano2 7893 | . . 3 ⊢ (𝑁 ∈ ω → suc 𝑁 ∈ ω) | |
5 | 3, 4 | jca 510 | . 2 ⊢ (𝑁 ∈ ω → ((𝑁 +o 1o) = suc 𝑁 ∧ suc 𝑁 ∈ ω)) |
6 | simpl 481 | . . 3 ⊢ (((𝑁 +o 1o) = suc 𝑁 ∧ suc 𝑁 ∈ ω) → (𝑁 +o 1o) = suc 𝑁) | |
7 | simpr 483 | . . 3 ⊢ (((𝑁 +o 1o) = suc 𝑁 ∧ suc 𝑁 ∈ ω) → suc 𝑁 ∈ ω) | |
8 | 6, 7 | eqeltrd 2825 | . 2 ⊢ (((𝑁 +o 1o) = suc 𝑁 ∧ suc 𝑁 ∈ ω) → (𝑁 +o 1o) ∈ ω) |
9 | omssrncard 43034 | . . 3 ⊢ ω ⊆ ran card | |
10 | 9 | sseli 3968 | . 2 ⊢ ((𝑁 +o 1o) ∈ ω → (𝑁 +o 1o) ∈ ran card) |
11 | 5, 8, 10 | 3syl 18 | 1 ⊢ (𝑁 ∈ ω → (𝑁 +o 1o) ∈ ran card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ran crn 5673 Oncon0 6364 suc csuc 6366 (class class class)co 7415 ωcom 7867 1oc1o 8476 +o coa 8480 cardccrd 9956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |