MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaord1 Structured version   Visualization version   GIF version

Theorem oaord1 8152
Description: An ordinal is less than its sum with a nonzero ordinal. Theorem 18 of [Suppes] p. 209 and its converse. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oaord1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ∈ (𝐴 +o 𝐵)))

Proof of Theorem oaord1
StepHypRef Expression
1 0elon 6217 . . . 4 ∅ ∈ On
2 oaord 8148 . . . 4 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
31, 2mp3an1 1445 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝐵)))
4 oa0 8116 . . . . 5 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
54adantl 485 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 +o ∅) = 𝐴)
65eleq1d 2896 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝐵) ↔ 𝐴 ∈ (𝐴 +o 𝐵)))
73, 6bitrd 282 . 2 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵𝐴 ∈ (𝐴 +o 𝐵)))
87ancoms 462 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ∈ (𝐴 +o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  c0 4266  Oncon0 6164  (class class class)co 7130   +o coa 8074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-oadd 8081
This theorem is referenced by:  oaordex  8159  omordi  8167  wunex3  10140
  Copyright terms: Public domain W3C validator