MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blnei Structured version   Visualization version   GIF version

Theorem blnei 23647
Description: A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
blnei ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))

Proof of Theorem blnei
StepHypRef Expression
1 mopni.1 . . . 4 𝐽 = (MetOpen‘𝐷)
21mopntop 23582 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
323ad2ant1 1132 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝐽 ∈ Top)
4 rpxr 12728 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
51blopn 23645 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽)
64, 5syl3an3 1164 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽)
7 blcntr 23555 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
8 opnneip 22259 . 2 ((𝐽 ∈ Top ∧ (𝑃(ball‘𝐷)𝑅) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑅)) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
93, 6, 7, 8syl3anc 1370 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  {csn 4563  cfv 6428  (class class class)co 7269  *cxr 10997  +crp 12719  ∞Metcxmet 20571  ballcbl 20573  MetOpencmopn 20576  Topctop 22031  neicnei 22237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8487  df-map 8606  df-en 8723  df-dom 8724  df-sdom 8725  df-sup 9190  df-inf 9191  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-n0 12223  df-z 12309  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-topgen 17143  df-psmet 20578  df-xmet 20579  df-bl 20581  df-mopn 20582  df-top 22032  df-topon 22049  df-bases 22085  df-nei 22238
This theorem is referenced by:  lpbl  23648  islpcn  43140
  Copyright terms: Public domain W3C validator