MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzpr Structured version   Visualization version   GIF version

Theorem fzpr 13588
Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzpr (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})

Proof of Theorem fzpr
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 uzid 12867 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 elfzp1 13583 . . . . 5 (𝑀 ∈ (ℤ𝑀) → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1))))
31, 2syl 17 . . . 4 (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1))))
4 fzsn 13575 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
54eleq2d 2815 . . . . . 6 (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...𝑀) ↔ 𝑚 ∈ {𝑀}))
6 velsn 4645 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
75, 6bitrdi 287 . . . . 5 (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...𝑀) ↔ 𝑚 = 𝑀))
87orbi1d 915 . . . 4 (𝑀 ∈ ℤ → ((𝑚 ∈ (𝑀...𝑀) ∨ 𝑚 = (𝑀 + 1)) ↔ (𝑚 = 𝑀𝑚 = (𝑀 + 1))))
93, 8bitrd 279 . . 3 (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ (𝑚 = 𝑀𝑚 = (𝑀 + 1))))
10 vex 3475 . . . 4 𝑚 ∈ V
1110elpr 4652 . . 3 (𝑚 ∈ {𝑀, (𝑀 + 1)} ↔ (𝑚 = 𝑀𝑚 = (𝑀 + 1)))
129, 11bitr4di 289 . 2 (𝑀 ∈ ℤ → (𝑚 ∈ (𝑀...(𝑀 + 1)) ↔ 𝑚 ∈ {𝑀, (𝑀 + 1)}))
1312eqrdv 2726 1 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 846   = wceq 1534  wcel 2099  {csn 4629  {cpr 4631  cfv 6548  (class class class)co 7420  1c1 11139   + caddc 11141  cz 12588  cuz 12852  ...cfz 13516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517
This theorem is referenced by:  fztp  13589  fz12pr  13590  fz0to3un2pr  13635  fz0to4untppr  13636  fzo13pr  13748  fzo0to2pr  13749  fzo0to42pr  13751  bpoly2  16033  bpoly3  16034  prmreclem2  16885  gsumprval  18647  m2detleiblem2  22529  uhgrwkspthlem2  29567  poimirlem1  37094  poimirlem8  37101  31prm  46937  nnsum3primes4  47128  nnsum3primesgbe  47132
  Copyright terms: Public domain W3C validator