MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem2 Structured version   Visualization version   GIF version

Theorem ovoliunlem2 24400
Description: Lemma for ovoliun 24402. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
ovoliun.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
ovoliun.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ovoliun.h 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
ovoliun.j (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
ovoliun.f (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
ovoliun.x1 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
ovoliun.x2 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
Assertion
Ref Expression
ovoliunlem2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐵   𝑘,𝐹,𝑛   𝑘,𝐽,𝑛   𝑛,𝐻   𝜑,𝑘,𝑛   𝑆,𝑘   𝑘,𝐺   𝑇,𝑘   𝑛,𝐺   𝑇,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)   𝑈(𝑘,𝑛)   𝐻(𝑘)

Proof of Theorem ovoliunlem2
Dummy variables 𝑗 𝑚 𝑥 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.a . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
21ralrimiva 3105 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
3 iunss 4954 . . . 4 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
42, 3sylibr 237 . . 3 (𝜑 𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
5 ovolcl 24375 . . 3 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
7 ovoliun.f . . . . . . . . . 10 (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
87adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
9 ovoliun.j . . . . . . . . . . . 12 (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
10 f1of 6661 . . . . . . . . . . . 12 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ⟶(ℕ × ℕ))
119, 10syl 17 . . . . . . . . . . 11 (𝜑𝐽:ℕ⟶(ℕ × ℕ))
1211ffvelrnda 6904 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ (ℕ × ℕ))
13 xp1st 7793 . . . . . . . . . 10 ((𝐽𝑘) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
158, 14ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
16 elovolmlem 24371 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1715, 16sylib 221 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 xp2nd 7794 . . . . . . . 8 ((𝐽𝑘) ∈ (ℕ × ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
1912, 18syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
2017, 19ffvelrnd 6905 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) ∈ ( ≤ ∩ (ℝ × ℝ)))
21 ovoliun.h . . . . . 6 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
2220, 21fmptd 6931 . . . . 5 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 eqid 2737 . . . . . 6 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
24 ovoliun.u . . . . . 6 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
2523, 24ovolsf 24369 . . . . 5 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞))
26 frn 6552 . . . . 5 (𝑈:ℕ⟶(0[,)+∞) → ran 𝑈 ⊆ (0[,)+∞))
2722, 25, 263syl 18 . . . 4 (𝜑 → ran 𝑈 ⊆ (0[,)+∞))
28 icossxr 13020 . . . 4 (0[,)+∞) ⊆ ℝ*
2927, 28sstrdi 3913 . . 3 (𝜑 → ran 𝑈 ⊆ ℝ*)
30 supxrcl 12905 . . 3 (ran 𝑈 ⊆ ℝ* → sup(ran 𝑈, ℝ*, < ) ∈ ℝ*)
3129, 30syl 17 . 2 (𝜑 → sup(ran 𝑈, ℝ*, < ) ∈ ℝ*)
32 ovoliun.r . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
33 ovoliun.b . . . . 5 (𝜑𝐵 ∈ ℝ+)
3433rpred 12628 . . . 4 (𝜑𝐵 ∈ ℝ)
3532, 34readdcld 10862 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ)
3635rexrd 10883 . 2 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ*)
37 eliun 4908 . . . . . 6 (𝑧 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑧𝐴)
38 ovoliun.x1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
39383adant3 1134 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
4013adant3 1134 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝐴 ⊆ ℝ)
417ffvelrnda 6904 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
42 elovolmlem 24371 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4341, 42sylib 221 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
44433adant3 1134 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
45 ovolfioo 24364 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ (𝐹𝑛)) ↔ ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
4640, 44, 45syl2anc 587 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (𝐴 ran ((,) ∘ (𝐹𝑛)) ↔ ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
4739, 46mpbid 235 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
48 simp3 1140 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝑧𝐴)
49 rsp 3127 . . . . . . . . 9 (∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → (𝑧𝐴 → ∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
5047, 48, 49sylc 65 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
51 simpl1 1193 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝜑)
52 f1ocnv 6673 . . . . . . . . . . . 12 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:(ℕ × ℕ)–1-1-onto→ℕ)
53 f1of 6661 . . . . . . . . . . . 12 (𝐽:(ℕ × ℕ)–1-1-onto→ℕ → 𝐽:(ℕ × ℕ)⟶ℕ)
5451, 9, 52, 534syl 19 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝐽:(ℕ × ℕ)⟶ℕ)
55 simpl2 1194 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝑛 ∈ ℕ)
56 simpr 488 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5754, 55, 56fovrnd 7380 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝑛𝐽𝑗) ∈ ℕ)
58 2fveq3 6722 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑛𝐽𝑗) → (1st ‘(𝐽𝑘)) = (1st ‘(𝐽‘(𝑛𝐽𝑗))))
5958fveq2d 6721 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛𝐽𝑗) → (𝐹‘(1st ‘(𝐽𝑘))) = (𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗)))))
60 2fveq3 6722 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛𝐽𝑗) → (2nd ‘(𝐽𝑘)) = (2nd ‘(𝐽‘(𝑛𝐽𝑗))))
6159, 60fveq12d 6724 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛𝐽𝑗) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
62 fvex 6730 . . . . . . . . . . . . . . . . 17 ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))) ∈ V
6361, 21, 62fvmpt 6818 . . . . . . . . . . . . . . . 16 ((𝑛𝐽𝑗) ∈ ℕ → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
6457, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
65 df-ov 7216 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝐽𝑗) = (𝐽‘⟨𝑛, 𝑗⟩)
6665fveq2i 6720 . . . . . . . . . . . . . . . . . . . 20 (𝐽‘(𝑛𝐽𝑗)) = (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩))
6751, 9syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝐽:ℕ–1-1-onto→(ℕ × ℕ))
6855, 56opelxpd 5589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ⟨𝑛, 𝑗⟩ ∈ (ℕ × ℕ))
69 f1ocnvfv2 7088 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽:ℕ–1-1-onto→(ℕ × ℕ) ∧ ⟨𝑛, 𝑗⟩ ∈ (ℕ × ℕ)) → (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩)) = ⟨𝑛, 𝑗⟩)
7067, 68, 69syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩)) = ⟨𝑛, 𝑗⟩)
7166, 70syl5eq 2790 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐽‘(𝑛𝐽𝑗)) = ⟨𝑛, 𝑗⟩)
7271fveq2d 6721 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐽‘(𝑛𝐽𝑗))) = (1st ‘⟨𝑛, 𝑗⟩))
73 vex 3412 . . . . . . . . . . . . . . . . . . 19 𝑛 ∈ V
74 vex 3412 . . . . . . . . . . . . . . . . . . 19 𝑗 ∈ V
7573, 74op1st 7769 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨𝑛, 𝑗⟩) = 𝑛
7672, 75eqtrdi 2794 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐽‘(𝑛𝐽𝑗))) = 𝑛)
7776fveq2d 6721 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗)))) = (𝐹𝑛))
7871fveq2d 6721 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐽‘(𝑛𝐽𝑗))) = (2nd ‘⟨𝑛, 𝑗⟩))
7973, 74op2nd 7770 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑛, 𝑗⟩) = 𝑗
8078, 79eqtrdi 2794 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐽‘(𝑛𝐽𝑗))) = 𝑗)
8177, 80fveq12d 6724 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))) = ((𝐹𝑛)‘𝑗))
8264, 81eqtrd 2777 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹𝑛)‘𝑗))
8382fveq2d 6721 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐻‘(𝑛𝐽𝑗))) = (1st ‘((𝐹𝑛)‘𝑗)))
8483breq1d 5063 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧 ↔ (1st ‘((𝐹𝑛)‘𝑗)) < 𝑧))
8582fveq2d 6721 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐻‘(𝑛𝐽𝑗))) = (2nd ‘((𝐹𝑛)‘𝑗)))
8685breq2d 5065 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))) ↔ 𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
8784, 86anbi12d 634 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗)))) ↔ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
8887biimprd 251 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))))
89 2fveq3 6722 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝐽𝑗) → (1st ‘(𝐻𝑚)) = (1st ‘(𝐻‘(𝑛𝐽𝑗))))
9089breq1d 5063 . . . . . . . . . . . 12 (𝑚 = (𝑛𝐽𝑗) → ((1st ‘(𝐻𝑚)) < 𝑧 ↔ (1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧))
91 2fveq3 6722 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝐽𝑗) → (2nd ‘(𝐻𝑚)) = (2nd ‘(𝐻‘(𝑛𝐽𝑗))))
9291breq2d 5065 . . . . . . . . . . . 12 (𝑚 = (𝑛𝐽𝑗) → (𝑧 < (2nd ‘(𝐻𝑚)) ↔ 𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗)))))
9390, 92anbi12d 634 . . . . . . . . . . 11 (𝑚 = (𝑛𝐽𝑗) → (((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))) ↔ ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))))
9493rspcev 3537 . . . . . . . . . 10 (((𝑛𝐽𝑗) ∈ ℕ ∧ ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
9557, 88, 94syl6an 684 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9695rexlimdva 3203 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9750, 96mpd 15 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
9897rexlimdv3a 3205 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑧𝐴 → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9937, 98syl5bi 245 . . . . 5 (𝜑 → (𝑧 𝑛 ∈ ℕ 𝐴 → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
10099ralrimiv 3104 . . . 4 (𝜑 → ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
101 ovolfioo 24364 . . . . 5 (( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ( 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
1024, 22, 101syl2anc 587 . . . 4 (𝜑 → ( 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
103100, 102mpbird 260 . . 3 (𝜑 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻))
10424ovollb 24376 . . 3 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻)) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑈, ℝ*, < ))
10522, 103, 104syl2anc 587 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑈, ℝ*, < ))
106 fzfi 13545 . . . . . . 7 (1...𝑗) ∈ Fin
107 elfznn 13141 . . . . . . . . . 10 (𝑤 ∈ (1...𝑗) → 𝑤 ∈ ℕ)
108 ffvelrn 6902 . . . . . . . . . . 11 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 𝑤 ∈ ℕ) → (𝐽𝑤) ∈ (ℕ × ℕ))
109 xp1st 7793 . . . . . . . . . . 11 ((𝐽𝑤) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑤)) ∈ ℕ)
110 nnre 11837 . . . . . . . . . . 11 ((1st ‘(𝐽𝑤)) ∈ ℕ → (1st ‘(𝐽𝑤)) ∈ ℝ)
111108, 109, 1103syl 18 . . . . . . . . . 10 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 𝑤 ∈ ℕ) → (1st ‘(𝐽𝑤)) ∈ ℝ)
11211, 107, 111syl2an 599 . . . . . . . . 9 ((𝜑𝑤 ∈ (1...𝑗)) → (1st ‘(𝐽𝑤)) ∈ ℝ)
113112ralrimiva 3105 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ)
114113adantr 484 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ)
115 fimaxre3 11778 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥)
116106, 114, 115sylancr 590 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥)
117 fllep1 13376 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
118117ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → 𝑥 ≤ ((⌊‘𝑥) + 1))
119112adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → (1st ‘(𝐽𝑤)) ∈ ℝ)
120 simplr 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → 𝑥 ∈ ℝ)
121 flcl 13370 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
122121peano2zd 12285 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
123122zred 12282 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
124123ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → ((⌊‘𝑥) + 1) ∈ ℝ)
125 letr 10926 . . . . . . . . . . . 12 (((1st ‘(𝐽𝑤)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → (((1st ‘(𝐽𝑤)) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
126119, 120, 124, 125syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → (((1st ‘(𝐽𝑤)) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
127118, 126mpan2d 694 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → ((1st ‘(𝐽𝑤)) ≤ 𝑥 → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
128127ralimdva 3100 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
129128adantlr 715 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
130 ovoliun.t . . . . . . . . . 10 𝑇 = seq1( + , 𝐺)
131 ovoliun.g . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
132 simpll 767 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝜑)
133132, 1sylan 583 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
134 ovoliun.v . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
135132, 134sylan 583 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
136132, 32syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
137132, 33syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐵 ∈ ℝ+)
138 ovoliun.s . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
139132, 9syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐽:ℕ–1-1-onto→(ℕ × ℕ))
140132, 7syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
141132, 38sylan 583 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
142 ovoliun.x2 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
143132, 142sylan 583 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
144 simplr 769 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝑗 ∈ ℕ)
145122ad2antrl 728 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → ((⌊‘𝑥) + 1) ∈ ℤ)
146 simprr 773 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))
147130, 131, 133, 135, 136, 137, 138, 24, 21, 139, 140, 141, 143, 144, 145, 146ovoliunlem1 24399 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
148147expr 460 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
149129, 148syld 47 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
150149rexlimdva 3203 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
151116, 150mpd 15 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
152151ralrimiva 3105 . . . 4 (𝜑 → ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
153 ffn 6545 . . . . 5 (𝑈:ℕ⟶(0[,)+∞) → 𝑈 Fn ℕ)
154 breq1 5056 . . . . . 6 (𝑧 = (𝑈𝑗) → (𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
155154ralrn 6907 . . . . 5 (𝑈 Fn ℕ → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
15622, 25, 153, 1554syl 19 . . . 4 (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
157152, 156mpbird 260 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
158 supxrleub 12916 . . . 4 ((ran 𝑈 ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
15929, 36, 158syl2anc 587 . . 3 (𝜑 → (sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
160157, 159mpbird 260 . 2 (𝜑 → sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1616, 31, 36, 105, 160xrletrd 12752 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cin 3865  wss 3866  cop 4547   cuni 4819   ciun 4904   class class class wbr 5053  cmpt 5135   × cxp 5549  ccnv 5550  ran crn 5552  ccom 5555   Fn wfn 6375  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  m cmap 8508  Fincfn 8626  supcsup 9056  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  +∞cpnf 10864  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  cz 12176  +crp 12586  (,)cioo 12935  [,)cico 12937  ...cfz 13095  cfl 13365  seqcseq 13574  cexp 13635  abscabs 14797  vol*covol 24359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ioo 12939  df-ico 12941  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-ovol 24361
This theorem is referenced by:  ovoliunlem3  24401
  Copyright terms: Public domain W3C validator