MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem2 Structured version   Visualization version   GIF version

Theorem ovoliunlem2 25557
Description: Lemma for ovoliun 25559. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
ovoliun.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
ovoliun.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ovoliun.h 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
ovoliun.j (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
ovoliun.f (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
ovoliun.x1 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
ovoliun.x2 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
Assertion
Ref Expression
ovoliunlem2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐵   𝑘,𝐹,𝑛   𝑘,𝐽,𝑛   𝑛,𝐻   𝜑,𝑘,𝑛   𝑆,𝑘   𝑘,𝐺   𝑇,𝑘   𝑛,𝐺   𝑇,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑆(𝑛)   𝑈(𝑘,𝑛)   𝐻(𝑘)

Proof of Theorem ovoliunlem2
Dummy variables 𝑗 𝑚 𝑥 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovoliun.a . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
21ralrimiva 3152 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
3 iunss 5068 . . . 4 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
42, 3sylibr 234 . . 3 (𝜑 𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
5 ovolcl 25532 . . 3 ( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
64, 5syl 17 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ∈ ℝ*)
7 ovoliun.f . . . . . . . . . 10 (𝜑𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
87adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
9 ovoliun.j . . . . . . . . . . . 12 (𝜑𝐽:ℕ–1-1-onto→(ℕ × ℕ))
10 f1of 6862 . . . . . . . . . . . 12 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:ℕ⟶(ℕ × ℕ))
119, 10syl 17 . . . . . . . . . . 11 (𝜑𝐽:ℕ⟶(ℕ × ℕ))
1211ffvelcdmda 7118 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐽𝑘) ∈ (ℕ × ℕ))
13 xp1st 8062 . . . . . . . . . 10 ((𝐽𝑘) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐽𝑘)) ∈ ℕ)
158, 14ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
16 elovolmlem 25528 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑘))) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1715, 16sylib 218 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(1st ‘(𝐽𝑘))):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
18 xp2nd 8063 . . . . . . . 8 ((𝐽𝑘) ∈ (ℕ × ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
1912, 18syl 17 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐽𝑘)) ∈ ℕ)
2017, 19ffvelcdmd 7119 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) ∈ ( ≤ ∩ (ℝ × ℝ)))
21 ovoliun.h . . . . . 6 𝐻 = (𝑘 ∈ ℕ ↦ ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))))
2220, 21fmptd 7148 . . . . 5 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 eqid 2740 . . . . . 6 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
24 ovoliun.u . . . . . 6 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
2523, 24ovolsf 25526 . . . . 5 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞))
26 frn 6754 . . . . 5 (𝑈:ℕ⟶(0[,)+∞) → ran 𝑈 ⊆ (0[,)+∞))
2722, 25, 263syl 18 . . . 4 (𝜑 → ran 𝑈 ⊆ (0[,)+∞))
28 icossxr 13492 . . . 4 (0[,)+∞) ⊆ ℝ*
2927, 28sstrdi 4021 . . 3 (𝜑 → ran 𝑈 ⊆ ℝ*)
30 supxrcl 13377 . . 3 (ran 𝑈 ⊆ ℝ* → sup(ran 𝑈, ℝ*, < ) ∈ ℝ*)
3129, 30syl 17 . 2 (𝜑 → sup(ran 𝑈, ℝ*, < ) ∈ ℝ*)
32 ovoliun.r . . . 4 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
33 ovoliun.b . . . . 5 (𝜑𝐵 ∈ ℝ+)
3433rpred 13099 . . . 4 (𝜑𝐵 ∈ ℝ)
3532, 34readdcld 11319 . . 3 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ)
3635rexrd 11340 . 2 (𝜑 → (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ*)
37 eliun 5019 . . . . . 6 (𝑧 𝑛 ∈ ℕ 𝐴 ↔ ∃𝑛 ∈ ℕ 𝑧𝐴)
38 ovoliun.x1 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
39383adant3 1132 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
4013adant3 1132 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝐴 ⊆ ℝ)
417ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
42 elovolmlem 25528 . . . . . . . . . . . . 13 ((𝐹𝑛) ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
4341, 42sylib 218 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
44433adant3 1132 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
45 ovolfioo 25521 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝐹𝑛):ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ (𝐹𝑛)) ↔ ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
4640, 44, 45syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (𝐴 ran ((,) ∘ (𝐹𝑛)) ↔ ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
4739, 46mpbid 232 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
48 simp3 1138 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → 𝑧𝐴)
49 rsp 3253 . . . . . . . . 9 (∀𝑧𝐴𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → (𝑧𝐴 → ∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
5047, 48, 49sylc 65 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
51 simpl1 1191 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝜑)
52 f1ocnv 6874 . . . . . . . . . . . 12 (𝐽:ℕ–1-1-onto→(ℕ × ℕ) → 𝐽:(ℕ × ℕ)–1-1-onto→ℕ)
53 f1of 6862 . . . . . . . . . . . 12 (𝐽:(ℕ × ℕ)–1-1-onto→ℕ → 𝐽:(ℕ × ℕ)⟶ℕ)
5451, 9, 52, 534syl 19 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝐽:(ℕ × ℕ)⟶ℕ)
55 simpl2 1192 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝑛 ∈ ℕ)
56 simpr 484 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
5754, 55, 56fovcdmd 7622 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝑛𝐽𝑗) ∈ ℕ)
58 2fveq3 6925 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑛𝐽𝑗) → (1st ‘(𝐽𝑘)) = (1st ‘(𝐽‘(𝑛𝐽𝑗))))
5958fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛𝐽𝑗) → (𝐹‘(1st ‘(𝐽𝑘))) = (𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗)))))
60 2fveq3 6925 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛𝐽𝑗) → (2nd ‘(𝐽𝑘)) = (2nd ‘(𝐽‘(𝑛𝐽𝑗))))
6159, 60fveq12d 6927 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛𝐽𝑗) → ((𝐹‘(1st ‘(𝐽𝑘)))‘(2nd ‘(𝐽𝑘))) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
62 fvex 6933 . . . . . . . . . . . . . . . . 17 ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))) ∈ V
6361, 21, 62fvmpt 7029 . . . . . . . . . . . . . . . 16 ((𝑛𝐽𝑗) ∈ ℕ → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
6457, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))))
65 df-ov 7451 . . . . . . . . . . . . . . . . . . . . 21 (𝑛𝐽𝑗) = (𝐽‘⟨𝑛, 𝑗⟩)
6665fveq2i 6923 . . . . . . . . . . . . . . . . . . . 20 (𝐽‘(𝑛𝐽𝑗)) = (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩))
6751, 9syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → 𝐽:ℕ–1-1-onto→(ℕ × ℕ))
6855, 56opelxpd 5739 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ⟨𝑛, 𝑗⟩ ∈ (ℕ × ℕ))
69 f1ocnvfv2 7313 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽:ℕ–1-1-onto→(ℕ × ℕ) ∧ ⟨𝑛, 𝑗⟩ ∈ (ℕ × ℕ)) → (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩)) = ⟨𝑛, 𝑗⟩)
7067, 68, 69syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐽‘(𝐽‘⟨𝑛, 𝑗⟩)) = ⟨𝑛, 𝑗⟩)
7166, 70eqtrid 2792 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐽‘(𝑛𝐽𝑗)) = ⟨𝑛, 𝑗⟩)
7271fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐽‘(𝑛𝐽𝑗))) = (1st ‘⟨𝑛, 𝑗⟩))
73 vex 3492 . . . . . . . . . . . . . . . . . . 19 𝑛 ∈ V
74 vex 3492 . . . . . . . . . . . . . . . . . . 19 𝑗 ∈ V
7573, 74op1st 8038 . . . . . . . . . . . . . . . . . 18 (1st ‘⟨𝑛, 𝑗⟩) = 𝑛
7672, 75eqtrdi 2796 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐽‘(𝑛𝐽𝑗))) = 𝑛)
7776fveq2d 6924 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗)))) = (𝐹𝑛))
7871fveq2d 6924 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐽‘(𝑛𝐽𝑗))) = (2nd ‘⟨𝑛, 𝑗⟩))
7973, 74op2nd 8039 . . . . . . . . . . . . . . . . 17 (2nd ‘⟨𝑛, 𝑗⟩) = 𝑗
8078, 79eqtrdi 2796 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐽‘(𝑛𝐽𝑗))) = 𝑗)
8177, 80fveq12d 6927 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(1st ‘(𝐽‘(𝑛𝐽𝑗))))‘(2nd ‘(𝐽‘(𝑛𝐽𝑗)))) = ((𝐹𝑛)‘𝑗))
8264, 81eqtrd 2780 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝐻‘(𝑛𝐽𝑗)) = ((𝐹𝑛)‘𝑗))
8382fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (1st ‘(𝐻‘(𝑛𝐽𝑗))) = (1st ‘((𝐹𝑛)‘𝑗)))
8483breq1d 5176 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧 ↔ (1st ‘((𝐹𝑛)‘𝑗)) < 𝑧))
8582fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (2nd ‘(𝐻‘(𝑛𝐽𝑗))) = (2nd ‘((𝐹𝑛)‘𝑗)))
8685breq2d 5178 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))) ↔ 𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))))
8784, 86anbi12d 631 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗)))) ↔ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗)))))
8887biimprd 248 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))))
89 2fveq3 6925 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝐽𝑗) → (1st ‘(𝐻𝑚)) = (1st ‘(𝐻‘(𝑛𝐽𝑗))))
9089breq1d 5176 . . . . . . . . . . . 12 (𝑚 = (𝑛𝐽𝑗) → ((1st ‘(𝐻𝑚)) < 𝑧 ↔ (1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧))
91 2fveq3 6925 . . . . . . . . . . . . 13 (𝑚 = (𝑛𝐽𝑗) → (2nd ‘(𝐻𝑚)) = (2nd ‘(𝐻‘(𝑛𝐽𝑗))))
9291breq2d 5178 . . . . . . . . . . . 12 (𝑚 = (𝑛𝐽𝑗) → (𝑧 < (2nd ‘(𝐻𝑚)) ↔ 𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗)))))
9390, 92anbi12d 631 . . . . . . . . . . 11 (𝑚 = (𝑛𝐽𝑗) → (((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))) ↔ ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))))
9493rspcev 3635 . . . . . . . . . 10 (((𝑛𝐽𝑗) ∈ ℕ ∧ ((1st ‘(𝐻‘(𝑛𝐽𝑗))) < 𝑧𝑧 < (2nd ‘(𝐻‘(𝑛𝐽𝑗))))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
9557, 88, 94syl6an 683 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) ∧ 𝑗 ∈ ℕ) → (((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9695rexlimdva 3161 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → (∃𝑗 ∈ ℕ ((1st ‘((𝐹𝑛)‘𝑗)) < 𝑧𝑧 < (2nd ‘((𝐹𝑛)‘𝑗))) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9750, 96mpd 15 . . . . . . 7 ((𝜑𝑛 ∈ ℕ ∧ 𝑧𝐴) → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
9897rexlimdv3a 3165 . . . . . 6 (𝜑 → (∃𝑛 ∈ ℕ 𝑧𝐴 → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
9937, 98biimtrid 242 . . . . 5 (𝜑 → (𝑧 𝑛 ∈ ℕ 𝐴 → ∃𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
10099ralrimiv 3151 . . . 4 (𝜑 → ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚))))
101 ovolfioo 25521 . . . . 5 (( 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → ( 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
1024, 22, 101syl2anc 583 . . . 4 (𝜑 → ( 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧 𝑛 ∈ ℕ 𝐴𝑚 ∈ ℕ ((1st ‘(𝐻𝑚)) < 𝑧𝑧 < (2nd ‘(𝐻𝑚)))))
103100, 102mpbird 257 . . 3 (𝜑 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻))
10424ovollb 25533 . . 3 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ 𝐴 ran ((,) ∘ 𝐻)) → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑈, ℝ*, < ))
10522, 103, 104syl2anc 583 . 2 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ sup(ran 𝑈, ℝ*, < ))
106 fzfi 14023 . . . . . . 7 (1...𝑗) ∈ Fin
107 elfznn 13613 . . . . . . . . . 10 (𝑤 ∈ (1...𝑗) → 𝑤 ∈ ℕ)
108 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 𝑤 ∈ ℕ) → (𝐽𝑤) ∈ (ℕ × ℕ))
109 xp1st 8062 . . . . . . . . . . 11 ((𝐽𝑤) ∈ (ℕ × ℕ) → (1st ‘(𝐽𝑤)) ∈ ℕ)
110 nnre 12300 . . . . . . . . . . 11 ((1st ‘(𝐽𝑤)) ∈ ℕ → (1st ‘(𝐽𝑤)) ∈ ℝ)
111108, 109, 1103syl 18 . . . . . . . . . 10 ((𝐽:ℕ⟶(ℕ × ℕ) ∧ 𝑤 ∈ ℕ) → (1st ‘(𝐽𝑤)) ∈ ℝ)
11211, 107, 111syl2an 595 . . . . . . . . 9 ((𝜑𝑤 ∈ (1...𝑗)) → (1st ‘(𝐽𝑤)) ∈ ℝ)
113112ralrimiva 3152 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ)
114113adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ)
115 fimaxre3 12241 . . . . . . 7 (((1...𝑗) ∈ Fin ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥)
116106, 114, 115sylancr 586 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥)
117 fllep1 13852 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ≤ ((⌊‘𝑥) + 1))
118117ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → 𝑥 ≤ ((⌊‘𝑥) + 1))
119112adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → (1st ‘(𝐽𝑤)) ∈ ℝ)
120 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → 𝑥 ∈ ℝ)
121 flcl 13846 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℤ)
122121peano2zd 12750 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℤ)
123122zred 12747 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → ((⌊‘𝑥) + 1) ∈ ℝ)
124123ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → ((⌊‘𝑥) + 1) ∈ ℝ)
125 letr 11384 . . . . . . . . . . . 12 (((1st ‘(𝐽𝑤)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((⌊‘𝑥) + 1) ∈ ℝ) → (((1st ‘(𝐽𝑤)) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
126119, 120, 124, 125syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → (((1st ‘(𝐽𝑤)) ≤ 𝑥𝑥 ≤ ((⌊‘𝑥) + 1)) → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
127118, 126mpan2d 693 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑤 ∈ (1...𝑗)) → ((1st ‘(𝐽𝑤)) ≤ 𝑥 → (1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
128127ralimdva 3173 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
129128adantlr 714 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1)))
130 ovoliun.t . . . . . . . . . 10 𝑇 = seq1( + , 𝐺)
131 ovoliun.g . . . . . . . . . 10 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
132 simpll 766 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝜑)
133132, 1sylan 579 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
134 ovoliun.v . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
135132, 134sylan 579 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
136132, 32syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
137132, 33syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐵 ∈ ℝ+)
138 ovoliun.s . . . . . . . . . 10 𝑆 = seq1( + , ((abs ∘ − ) ∘ (𝐹𝑛)))
139132, 9syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐽:ℕ–1-1-onto→(ℕ × ℕ))
140132, 7syl 17 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝐹:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
141132, 38sylan 579 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → 𝐴 ran ((,) ∘ (𝐹𝑛)))
142 ovoliun.x2 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
143132, 142sylan 579 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) ∧ 𝑛 ∈ ℕ) → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
144 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → 𝑗 ∈ ℕ)
145122ad2antrl 727 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → ((⌊‘𝑥) + 1) ∈ ℤ)
146 simprr 772 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))
147130, 131, 133, 135, 136, 137, 138, 24, 21, 139, 140, 141, 143, 144, 145, 146ovoliunlem1 25556 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ (𝑥 ∈ ℝ ∧ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1))) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
148147expr 456 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ ((⌊‘𝑥) + 1) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
149129, 148syld 47 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
150149rexlimdva 3161 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ (1...𝑗)(1st ‘(𝐽𝑤)) ≤ 𝑥 → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
151116, 150mpd 15 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
152151ralrimiva 3152 . . . 4 (𝜑 → ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
153 ffn 6747 . . . . 5 (𝑈:ℕ⟶(0[,)+∞) → 𝑈 Fn ℕ)
154 breq1 5169 . . . . . 6 (𝑧 = (𝑈𝑗) → (𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
155154ralrn 7122 . . . . 5 (𝑈 Fn ℕ → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
15622, 25, 153, 1554syl 19 . . . 4 (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑗 ∈ ℕ (𝑈𝑗) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
157152, 156mpbird 257 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
158 supxrleub 13388 . . . 4 ((ran 𝑈 ⊆ ℝ* ∧ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ∈ ℝ*) → (sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
15929, 36, 158syl2anc 583 . . 3 (𝜑 → (sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
160157, 159mpbird 257 . 2 (𝜑 → sup(ran 𝑈, ℝ*, < ) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1616, 31, 36, 105, 160xrletrd 13224 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cin 3975  wss 3976  cop 4654   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  ran crn 5701  ccom 5704   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  m cmap 8884  Fincfn 9003  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cz 12639  +crp 13057  (,)cioo 13407  [,)cico 13409  ...cfz 13567  cfl 13841  seqcseq 14052  cexp 14112  abscabs 15283  vol*covol 25516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-ovol 25518
This theorem is referenced by:  ovoliunlem3  25558
  Copyright terms: Public domain W3C validator