MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qexpz Structured version   Visualization version   GIF version

Theorem qexpz 16602
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)

Proof of Theorem qexpz
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . 2 (𝐴 = 0 → (𝐴 ∈ ℤ ↔ 0 ∈ ℤ))
2 simpll2 1212 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
32nncnd 11989 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℂ)
43mul01d 11174 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) = 0)
5 simpr 485 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6 simpll3 1213 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
7 simpll1 1211 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℚ)
8 qcn 12703 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
97, 8syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℂ)
10 simplr 766 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ≠ 0)
112nnzd 12425 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
129, 10, 11expne0d 13870 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ≠ 0)
13 pczcl 16549 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ ((𝐴𝑁) ∈ ℤ ∧ (𝐴𝑁) ≠ 0)) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
145, 6, 12, 13syl12anc 834 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
1514nn0ge0d 12296 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝐴𝑁)))
16 pcexp 16560 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
175, 7, 10, 11, 16syl121anc 1374 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
1815, 17breqtrd 5100 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑁 · (𝑝 pCnt 𝐴)))
194, 18eqbrtrd 5096 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴)))
20 0red 10978 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℝ)
21 pcqcl 16557 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℤ)
225, 7, 10, 21syl12anc 834 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
2322zred 12426 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
242nnred 11988 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ)
252nngt0d 12022 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 < 𝑁)
26 lemul2 11828 . . . . . 6 ((0 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2720, 23, 24, 25, 26syl112anc 1373 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2819, 27mpbird 256 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
2928ralrimiva 3103 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
30 simpl1 1190 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℚ)
31 pcz 16582 . . . 4 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3230, 31syl 17 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3329, 32mpbird 256 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
34 0zd 12331 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 0 ∈ ℤ)
351, 33, 34pm2.61ne 3030 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  cn 11973  0cn0 12233  cz 12319  cq 12688  cexp 13782  cprime 16376   pCnt cpc 16537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator