MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qexpz Structured version   Visualization version   GIF version

Theorem qexpz 16939
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)

Proof of Theorem qexpz
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2829 . 2 (𝐴 = 0 → (𝐴 ∈ ℤ ↔ 0 ∈ ℤ))
2 simpll2 1214 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
32nncnd 12282 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℂ)
43mul01d 11460 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) = 0)
5 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6 simpll3 1215 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
7 simpll1 1213 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℚ)
8 qcn 13005 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
97, 8syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℂ)
10 simplr 769 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ≠ 0)
112nnzd 12640 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
129, 10, 11expne0d 14192 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ≠ 0)
13 pczcl 16886 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ ((𝐴𝑁) ∈ ℤ ∧ (𝐴𝑁) ≠ 0)) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
145, 6, 12, 13syl12anc 837 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
1514nn0ge0d 12590 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝐴𝑁)))
16 pcexp 16897 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
175, 7, 10, 11, 16syl121anc 1377 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
1815, 17breqtrd 5169 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑁 · (𝑝 pCnt 𝐴)))
194, 18eqbrtrd 5165 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴)))
20 0red 11264 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℝ)
21 pcqcl 16894 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℤ)
225, 7, 10, 21syl12anc 837 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
2322zred 12722 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
242nnred 12281 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ)
252nngt0d 12315 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 < 𝑁)
26 lemul2 12120 . . . . . 6 ((0 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2720, 23, 24, 25, 26syl112anc 1376 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2819, 27mpbird 257 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
2928ralrimiva 3146 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
30 simpl1 1192 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℚ)
31 pcz 16919 . . . 4 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3230, 31syl 17 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3329, 32mpbird 257 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
34 0zd 12625 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 0 ∈ ℤ)
351, 33, 34pm2.61ne 3027 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155   · cmul 11160   < clt 11295  cle 11296  cn 12266  0cn0 12526  cz 12613  cq 12990  cexp 14102  cprime 16708   pCnt cpc 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator