MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qexpz Structured version   Visualization version   GIF version

Theorem qexpz 16879
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)

Proof of Theorem qexpz
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . 2 (𝐴 = 0 → (𝐴 ∈ ℤ ↔ 0 ∈ ℤ))
2 simpll2 1214 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
32nncnd 12209 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℂ)
43mul01d 11380 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) = 0)
5 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
6 simpll3 1215 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
7 simpll1 1213 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℚ)
8 qcn 12929 . . . . . . . . . . 11 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
97, 8syl 17 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℂ)
10 simplr 768 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ≠ 0)
112nnzd 12563 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
129, 10, 11expne0d 14124 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ≠ 0)
13 pczcl 16826 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ ((𝐴𝑁) ∈ ℤ ∧ (𝐴𝑁) ≠ 0)) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
145, 6, 12, 13syl12anc 836 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
1514nn0ge0d 12513 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝐴𝑁)))
16 pcexp 16837 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
175, 7, 10, 11, 16syl121anc 1377 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
1815, 17breqtrd 5136 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑁 · (𝑝 pCnt 𝐴)))
194, 18eqbrtrd 5132 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴)))
20 0red 11184 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℝ)
21 pcqcl 16834 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℤ)
225, 7, 10, 21syl12anc 836 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
2322zred 12645 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
242nnred 12208 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ)
252nngt0d 12242 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 < 𝑁)
26 lemul2 12042 . . . . . 6 ((0 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2720, 23, 24, 25, 26syl112anc 1376 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
2819, 27mpbird 257 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
2928ralrimiva 3126 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
30 simpl1 1192 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℚ)
31 pcz 16859 . . . 4 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3230, 31syl 17 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
3329, 32mpbird 257 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
34 0zd 12548 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 0 ∈ ℤ)
351, 33, 34pm2.61ne 3011 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216  cn 12193  0cn0 12449  cz 12536  cq 12914  cexp 14033  cprime 16648   pCnt cpc 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator