![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapvv | Structured version Visualization version GIF version |
Description: Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.) |
Ref | Expression |
---|---|
hgmapvv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapvv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapvv.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapvv.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapvv.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmapvv.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hgmapvv.j | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmapvv | ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6415 | . . 3 ⊢ (𝑋 = (0g‘𝑅) → (𝐺‘(𝐺‘𝑋)) = (𝐺‘(𝐺‘(0g‘𝑅)))) | |
2 | id 22 | . . 3 ⊢ (𝑋 = (0g‘𝑅) → 𝑋 = (0g‘𝑅)) | |
3 | 1, 2 | eqeq12d 2813 | . 2 ⊢ (𝑋 = (0g‘𝑅) → ((𝐺‘(𝐺‘𝑋)) = 𝑋 ↔ (𝐺‘(𝐺‘(0g‘𝑅))) = (0g‘𝑅))) |
4 | hgmapvv.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | eqid 2798 | . . 3 ⊢ 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
6 | eqid 2798 | . . 3 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
7 | hgmapvv.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | eqid 2798 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
9 | eqid 2798 | . . 3 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
10 | hgmapvv.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
11 | hgmapvv.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
12 | eqid 2798 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
13 | eqid 2798 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
14 | eqid 2798 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
15 | eqid 2798 | . . 3 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
16 | eqid 2798 | . . 3 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
17 | hgmapvv.g | . . 3 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
18 | hgmapvv.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
19 | 18 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | hgmapvv.j | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 20 | anim1i 609 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ (0g‘𝑅))) |
22 | eldifsn 4505 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ {(0g‘𝑅)}) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ (0g‘𝑅))) | |
23 | 21, 22 | sylibr 226 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → 𝑋 ∈ (𝐵 ∖ {(0g‘𝑅)})) |
24 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 23 | hgmapvvlem3 37939 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ (0g‘𝑅)) → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
25 | 4, 7, 10, 13, 17, 18 | hgmapval0 37906 | . . . 4 ⊢ (𝜑 → (𝐺‘(0g‘𝑅)) = (0g‘𝑅)) |
26 | 25 | fveq2d 6414 | . . 3 ⊢ (𝜑 → (𝐺‘(𝐺‘(0g‘𝑅))) = (𝐺‘(0g‘𝑅))) |
27 | 26, 25 | eqtrd 2832 | . 2 ⊢ (𝜑 → (𝐺‘(𝐺‘(0g‘𝑅))) = (0g‘𝑅)) |
28 | 3, 24, 27 | pm2.61ne 3055 | 1 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2970 ∖ cdif 3765 {csn 4367 〈cop 4373 I cid 5218 ↾ cres 5313 ‘cfv 6100 Basecbs 16181 .rcmulr 16265 Scalarcsca 16267 ·𝑠 cvsca 16268 0gc0g 16412 1rcur 18814 invrcinvr 18984 HLchlt 35364 LHypclh 35998 LTrncltrn 36115 DVecHcdvh 37092 ocHcoch 37361 HDMapchdma 37806 HGMapchg 37897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 ax-riotaBAD 34967 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-ot 4376 df-uni 4628 df-int 4667 df-iun 4711 df-iin 4712 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-of 7130 df-om 7299 df-1st 7400 df-2nd 7401 df-tpos 7589 df-undef 7636 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-map 8096 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-2 11373 df-3 11374 df-4 11375 df-5 11376 df-6 11377 df-n0 11578 df-z 11664 df-uz 11928 df-fz 12578 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-0g 16414 df-mre 16558 df-mrc 16559 df-acs 16561 df-proset 17240 df-poset 17258 df-plt 17270 df-lub 17286 df-glb 17287 df-join 17288 df-meet 17289 df-p0 17351 df-p1 17352 df-lat 17358 df-clat 17420 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-subg 17901 df-cntz 18059 df-oppg 18085 df-lsm 18361 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-oppr 18936 df-dvdsr 18954 df-unit 18955 df-invr 18985 df-dvr 18996 df-drng 19064 df-lmod 19180 df-lss 19248 df-lsp 19290 df-lvec 19421 df-lsatoms 34990 df-lshyp 34991 df-lcv 35033 df-lfl 35072 df-lkr 35100 df-ldual 35138 df-oposet 35190 df-ol 35192 df-oml 35193 df-covers 35280 df-ats 35281 df-atl 35312 df-cvlat 35336 df-hlat 35365 df-llines 35512 df-lplanes 35513 df-lvols 35514 df-lines 35515 df-psubsp 35517 df-pmap 35518 df-padd 35810 df-lhyp 36002 df-laut 36003 df-ldil 36118 df-ltrn 36119 df-trl 36173 df-tgrp 36757 df-tendo 36769 df-edring 36771 df-dveca 37017 df-disoa 37043 df-dvech 37093 df-dib 37153 df-dic 37187 df-dih 37243 df-doch 37362 df-djh 37409 df-lcdual 37601 df-mapd 37639 df-hvmap 37771 df-hdmap1 37807 df-hdmap 37808 df-hgmap 37898 |
This theorem is referenced by: hdmapglem7 37943 hlhilsrnglem 37967 |
Copyright terms: Public domain | W3C validator |