| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmid | Structured version Visualization version GIF version | ||
| Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| lcmid | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . 3 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0)) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑀 = 0 → (abs‘𝑀) = (abs‘0)) | |
| 3 | abs0 15189 | . . . 4 ⊢ (abs‘0) = 0 | |
| 4 | 2, 3 | eqtrdi 2782 | . . 3 ⊢ (𝑀 = 0 → (abs‘𝑀) = 0) |
| 5 | 1, 4 | eqeq12d 2747 | . 2 ⊢ (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) |
| 6 | lcmcl 16509 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0) | |
| 7 | 6 | nn0cnd 12441 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ) |
| 8 | 7 | anidms 566 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ) |
| 10 | zabscl 15217 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ) | |
| 11 | 10 | zcnd 12575 | . . . 4 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ) |
| 13 | zcn 12470 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
| 16 | 14, 15 | absne0d 15354 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0) |
| 17 | lcmgcd 16515 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) | |
| 18 | 17 | anidms 566 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) |
| 19 | gcdid 16435 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) | |
| 20 | 19 | oveq2d 7362 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀))) |
| 21 | 13, 13 | absmuld 15361 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 22 | 18, 20, 21 | 3eqtr3d 2774 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 24 | 9, 12, 12, 16, 23 | mulcan2ad 11750 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| 25 | lcm0val 16502 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
| 26 | 5, 24, 25 | pm2.61ne 3013 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 · cmul 11008 ℤcz 12465 abscabs 15138 gcd cgcd 16402 lcm clcm 16496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-gcd 16403 df-lcm 16498 |
| This theorem is referenced by: lcmgcdeq 16520 lcmfsn 16543 lcm1un 42045 |
| Copyright terms: Public domain | W3C validator |