![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmid | Structured version Visualization version GIF version |
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
lcmid | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7420 | . . 3 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0)) | |
2 | fveq2 6891 | . . . 4 ⊢ (𝑀 = 0 → (abs‘𝑀) = (abs‘0)) | |
3 | abs0 15239 | . . . 4 ⊢ (abs‘0) = 0 | |
4 | 2, 3 | eqtrdi 2787 | . . 3 ⊢ (𝑀 = 0 → (abs‘𝑀) = 0) |
5 | 1, 4 | eqeq12d 2747 | . 2 ⊢ (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) |
6 | lcmcl 16545 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0) | |
7 | 6 | nn0cnd 12541 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ) |
8 | 7 | anidms 566 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ) |
10 | zabscl 15267 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ) | |
11 | 10 | zcnd 12674 | . . . 4 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ) |
13 | zcn 12570 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
15 | simpr 484 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
16 | 14, 15 | absne0d 15401 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0) |
17 | lcmgcd 16551 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) | |
18 | 17 | anidms 566 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) |
19 | gcdid 16475 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) | |
20 | 19 | oveq2d 7428 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀))) |
21 | 13, 13 | absmuld 15408 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
22 | 18, 20, 21 | 3eqtr3d 2779 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
23 | 22 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
24 | 9, 12, 12, 16, 23 | mulcan2ad 11857 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
25 | lcm0val 16538 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
26 | 5, 24, 25 | pm2.61ne 3026 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 0cc0 11116 · cmul 11121 ℤcz 12565 abscabs 15188 gcd cgcd 16442 lcm clcm 16532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-dvds 16205 df-gcd 16443 df-lcm 16534 |
This theorem is referenced by: lcmgcdeq 16556 lcmfsn 16579 lcm1un 41345 |
Copyright terms: Public domain | W3C validator |