MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmid Structured version   Visualization version   GIF version

Theorem lcmid 16643
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmid (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))

Proof of Theorem lcmid
StepHypRef Expression
1 oveq2 7439 . . 3 (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0))
2 fveq2 6907 . . . 4 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
3 abs0 15321 . . . 4 (abs‘0) = 0
42, 3eqtrdi 2791 . . 3 (𝑀 = 0 → (abs‘𝑀) = 0)
51, 4eqeq12d 2751 . 2 (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0))
6 lcmcl 16635 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0)
76nn0cnd 12587 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ)
87anidms 566 . . . 4 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ)
98adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ)
10 zabscl 15349 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
1110zcnd 12721 . . . 4 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
1211adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
13 zcn 12616 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1413adantr 480 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
15 simpr 484 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
1614, 15absne0d 15483 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
17 lcmgcd 16641 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
1817anidms 566 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
19 gcdid 16561 . . . . . 6 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2019oveq2d 7447 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀)))
2113, 13absmuld 15490 . . . . 5 (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
2218, 20, 213eqtr3d 2783 . . . 4 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
2322adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
249, 12, 12, 16, 23mulcan2ad 11897 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
25 lcm0val 16628 . 2 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
265, 24, 25pm2.61ne 3025 1 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153   · cmul 11158  cz 12611  abscabs 15270   gcd cgcd 16528   lcm clcm 16622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-lcm 16624
This theorem is referenced by:  lcmgcdeq  16646  lcmfsn  16669  lcm1un  41995
  Copyright terms: Public domain W3C validator