![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoss1 | Structured version Visualization version GIF version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4006 | . 2 ⊢ ((𝐾..^𝑁) = ∅ → ((𝐾..^𝑁) ⊆ (𝑀..^𝑁) ↔ ∅ ⊆ (𝑀..^𝑁))) | |
2 | fzon0 13654 | . . . 4 ⊢ ((𝐾..^𝑁) ≠ ∅ ↔ 𝐾 ∈ (𝐾..^𝑁)) | |
3 | elfzoel2 13635 | . . . 4 ⊢ (𝐾 ∈ (𝐾..^𝑁) → 𝑁 ∈ ℤ) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ ((𝐾..^𝑁) ≠ ∅ → 𝑁 ∈ ℤ) |
5 | fzss1 13544 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
6 | 5 | adantr 479 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
7 | fzoval 13637 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) | |
8 | 7 | adantl 480 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) |
9 | fzoval 13637 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
10 | 9 | adantl 480 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
11 | 6, 8, 10 | 3sstr4d 4028 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
12 | 4, 11 | sylan2 591 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾..^𝑁) ≠ ∅) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
13 | 0ss 4395 | . . 3 ⊢ ∅ ⊆ (𝑀..^𝑁) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → ∅ ⊆ (𝑀..^𝑁)) |
15 | 1, 12, 14 | pm2.61ne 3025 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3947 ∅c0 4321 ‘cfv 6542 (class class class)co 7411 1c1 11113 − cmin 11448 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13488 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: fzo0ss1 13666 fzosplit 13669 zpnn0elfzo 13709 fzofzp1 13733 fzostep1 13752 injresinjlem 13756 ccatval2 14532 ccatass 14542 swrdval2 14600 splfv2a 14710 revccat 14720 fsumparts 15756 crctcshwlkn0lem5 29335 clwwlkccatlem 29509 swrdrn2 32385 swrdrn3 32386 swrdf1 32387 swrdrndisj 32388 cycpmco2rn 32554 cycpmco2lem6 32560 revpfxsfxrev 34404 iunincfi 44084 iccpartipre 46387 iccpartiltu 46388 bgoldbtbndlem2 46772 |
Copyright terms: Public domain | W3C validator |