![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzoss1 | Structured version Visualization version GIF version |
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
fzoss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4006 | . 2 ⊢ ((𝐾..^𝑁) = ∅ → ((𝐾..^𝑁) ⊆ (𝑀..^𝑁) ↔ ∅ ⊆ (𝑀..^𝑁))) | |
2 | fzon0 13646 | . . . 4 ⊢ ((𝐾..^𝑁) ≠ ∅ ↔ 𝐾 ∈ (𝐾..^𝑁)) | |
3 | elfzoel2 13627 | . . . 4 ⊢ (𝐾 ∈ (𝐾..^𝑁) → 𝑁 ∈ ℤ) | |
4 | 2, 3 | sylbi 216 | . . 3 ⊢ ((𝐾..^𝑁) ≠ ∅ → 𝑁 ∈ ℤ) |
5 | fzss1 13536 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
6 | 5 | adantr 482 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
7 | fzoval 13629 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) | |
8 | 7 | adantl 483 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) |
9 | fzoval 13629 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
10 | 9 | adantl 483 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
11 | 6, 8, 10 | 3sstr4d 4028 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
12 | 4, 11 | sylan2 594 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾..^𝑁) ≠ ∅) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
13 | 0ss 4395 | . . 3 ⊢ ∅ ⊆ (𝑀..^𝑁) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → ∅ ⊆ (𝑀..^𝑁)) |
15 | 1, 12, 14 | pm2.61ne 3028 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ⊆ wss 3947 ∅c0 4321 ‘cfv 6540 (class class class)co 7404 1c1 11107 − cmin 11440 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: fzo0ss1 13658 fzosplit 13661 zpnn0elfzo 13701 fzofzp1 13725 fzostep1 13744 injresinjlem 13748 ccatval2 14524 ccatass 14534 swrdval2 14592 splfv2a 14702 revccat 14712 fsumparts 15748 crctcshwlkn0lem5 29048 clwwlkccatlem 29222 swrdrn2 32096 swrdrn3 32097 swrdf1 32098 swrdrndisj 32099 cycpmco2rn 32262 cycpmco2lem6 32268 revpfxsfxrev 34044 iunincfi 43716 iccpartipre 46024 iccpartiltu 46025 bgoldbtbndlem2 46409 |
Copyright terms: Public domain | W3C validator |