| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzoss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| fzoss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3989 | . 2 ⊢ ((𝐾..^𝑁) = ∅ → ((𝐾..^𝑁) ⊆ (𝑀..^𝑁) ↔ ∅ ⊆ (𝑀..^𝑁))) | |
| 2 | fzon0 13699 | . . . 4 ⊢ ((𝐾..^𝑁) ≠ ∅ ↔ 𝐾 ∈ (𝐾..^𝑁)) | |
| 3 | elfzoel2 13680 | . . . 4 ⊢ (𝐾 ∈ (𝐾..^𝑁) → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | sylbi 217 | . . 3 ⊢ ((𝐾..^𝑁) ≠ ∅ → 𝑁 ∈ ℤ) |
| 5 | fzss1 13585 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾...(𝑁 − 1)) ⊆ (𝑀...(𝑁 − 1))) |
| 7 | fzoval 13682 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) | |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) = (𝐾...(𝑁 − 1))) |
| 9 | fzoval 13682 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
| 11 | 6, 8, 10 | 3sstr4d 4019 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
| 12 | 4, 11 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ (𝐾..^𝑁) ≠ ∅) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
| 13 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ (𝑀..^𝑁) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → ∅ ⊆ (𝑀..^𝑁)) |
| 15 | 1, 12, 14 | pm2.61ne 3016 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾..^𝑁) ⊆ (𝑀..^𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 1c1 11138 − cmin 11474 ℤcz 12596 ℤ≥cuz 12860 ...cfz 13529 ..^cfzo 13676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 |
| This theorem is referenced by: fzo0ss1 13711 fzosplit 13714 zpnn0elfzo 13759 fzofzp1 13785 fzostep1 13804 injresinjlem 13808 ccatval2 14598 ccatass 14608 swrdval2 14666 splfv2a 14776 revccat 14786 fsumparts 15824 dfpth2 29677 crctcshwlkn0lem5 29762 clwwlkccatlem 29936 swrdrn2 32879 swrdrn3 32880 swrdf1 32881 swrdrndisj 32882 cycpmco2rn 33084 cycpmco2lem6 33090 revpfxsfxrev 35080 iunincfi 45056 iccpartipre 47366 iccpartiltu 47367 bgoldbtbndlem2 47751 |
| Copyright terms: Public domain | W3C validator |