MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   GIF version

Theorem abs1m 15370
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6906 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
2 abs0 15320 . . . . . 6 (abs‘0) = 0
31, 2eqtrdi 2790 . . . . 5 (𝐴 = 0 → (abs‘𝐴) = 0)
4 oveq2 7438 . . . . 5 (𝐴 = 0 → (𝑥 · 𝐴) = (𝑥 · 0))
53, 4eqeq12d 2750 . . . 4 (𝐴 = 0 → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ 0 = (𝑥 · 0)))
65anbi2d 630 . . 3 (𝐴 = 0 → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
76rexbidv 3176 . 2 (𝐴 = 0 → (∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
8 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
98cjcld 15231 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
10 abscl 15313 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1110adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1211recnd 11286 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
13 abs00 15324 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1413necon3bid 2982 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1514biimpar 477 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
169, 12, 15divcld 12040 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ)
17 absdiv 15330 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
189, 12, 15, 17syl3anc 1370 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
19 abscj 15314 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
2019adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(∗‘𝐴)) = (abs‘𝐴))
21 absidm 15358 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2221adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2320, 22oveq12d 7448 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))) = ((abs‘𝐴) / (abs‘𝐴)))
2412, 15dividd 12038 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
2518, 23, 243eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1)
268, 9, 12, 15divassd 12075 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
2712sqvald 14179 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
28 absvalsq 15315 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
2928adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3027, 29eqtr3d 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (abs‘𝐴)) = (𝐴 · (∗‘𝐴)))
3112, 12, 15, 30mvllmuld 12096 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)))
3216, 8mulcomd 11279 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘𝐴) / (abs‘𝐴)) · 𝐴) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
3326, 31, 323eqtr4d 2784 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
34 fveqeq2 6915 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝑥) = 1 ↔ (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1))
35 oveq1 7437 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (𝑥 · 𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
3635eqeq2d 2745 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴)))
3734, 36anbi12d 632 . . . 4 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))))
3837rspcev 3621 . . 3 ((((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ ∧ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
3916, 25, 33, 38syl12anc 837 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
40 ax-icn 11211 . . . 4 i ∈ ℂ
41 absi 15321 . . . . 5 (abs‘i) = 1
42 it0e0 12485 . . . . . 6 (i · 0) = 0
4342eqcomi 2743 . . . . 5 0 = (i · 0)
4441, 43pm3.2i 470 . . . 4 ((abs‘i) = 1 ∧ 0 = (i · 0))
45 fveqeq2 6915 . . . . . 6 (𝑥 = i → ((abs‘𝑥) = 1 ↔ (abs‘i) = 1))
46 oveq1 7437 . . . . . . 7 (𝑥 = i → (𝑥 · 0) = (i · 0))
4746eqeq2d 2745 . . . . . 6 (𝑥 = i → (0 = (𝑥 · 0) ↔ 0 = (i · 0)))
4845, 47anbi12d 632 . . . . 5 (𝑥 = i → (((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)) ↔ ((abs‘i) = 1 ∧ 0 = (i · 0))))
4948rspcev 3621 . . . 4 ((i ∈ ℂ ∧ ((abs‘i) = 1 ∧ 0 = (i · 0))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
5040, 44, 49mp2an 692 . . 3 𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))
5150a1i 11 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
527, 39, 51pm2.61ne 3024 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153  ici 11154   · cmul 11157   / cdiv 11917  2c2 12318  cexp 14098  ccj 15131  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator