MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   GIF version

Theorem abs1m 14452
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6433 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
2 abs0 14402 . . . . . 6 (abs‘0) = 0
31, 2syl6eq 2877 . . . . 5 (𝐴 = 0 → (abs‘𝐴) = 0)
4 oveq2 6913 . . . . 5 (𝐴 = 0 → (𝑥 · 𝐴) = (𝑥 · 0))
53, 4eqeq12d 2840 . . . 4 (𝐴 = 0 → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ 0 = (𝑥 · 0)))
65anbi2d 624 . . 3 (𝐴 = 0 → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
76rexbidv 3262 . 2 (𝐴 = 0 → (∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
8 simpl 476 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
98cjcld 14313 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
10 abscl 14395 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1110adantr 474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1211recnd 10385 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
13 abs00 14406 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1413necon3bid 3043 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1514biimpar 471 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
169, 12, 15divcld 11127 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ)
17 absdiv 14412 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
189, 12, 15, 17syl3anc 1496 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
19 abscj 14396 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
2019adantr 474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(∗‘𝐴)) = (abs‘𝐴))
21 absidm 14440 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2221adantr 474 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2320, 22oveq12d 6923 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))) = ((abs‘𝐴) / (abs‘𝐴)))
2412, 15dividd 11125 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
2518, 23, 243eqtrd 2865 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1)
268, 9, 12, 15divassd 11162 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
2712sqvald 13299 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
28 absvalsq 14397 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
2928adantr 474 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3027, 29eqtr3d 2863 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (abs‘𝐴)) = (𝐴 · (∗‘𝐴)))
3112, 12, 15, 30mvllmuld 11183 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)))
3216, 8mulcomd 10378 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘𝐴) / (abs‘𝐴)) · 𝐴) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
3326, 31, 323eqtr4d 2871 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
34 fveqeq2 6442 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝑥) = 1 ↔ (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1))
35 oveq1 6912 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (𝑥 · 𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
3635eqeq2d 2835 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴)))
3734, 36anbi12d 626 . . . 4 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))))
3837rspcev 3526 . . 3 ((((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ ∧ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
3916, 25, 33, 38syl12anc 872 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
40 ax-icn 10311 . . . 4 i ∈ ℂ
41 absi 14403 . . . . 5 (abs‘i) = 1
42 it0e0 11580 . . . . . 6 (i · 0) = 0
4342eqcomi 2834 . . . . 5 0 = (i · 0)
4441, 43pm3.2i 464 . . . 4 ((abs‘i) = 1 ∧ 0 = (i · 0))
45 fveqeq2 6442 . . . . . 6 (𝑥 = i → ((abs‘𝑥) = 1 ↔ (abs‘i) = 1))
46 oveq1 6912 . . . . . . 7 (𝑥 = i → (𝑥 · 0) = (i · 0))
4746eqeq2d 2835 . . . . . 6 (𝑥 = i → (0 = (𝑥 · 0) ↔ 0 = (i · 0)))
4845, 47anbi12d 626 . . . . 5 (𝑥 = i → (((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)) ↔ ((abs‘i) = 1 ∧ 0 = (i · 0))))
4948rspcev 3526 . . . 4 ((i ∈ ℂ ∧ ((abs‘i) = 1 ∧ 0 = (i · 0))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
5040, 44, 49mp2an 685 . . 3 𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))
5150a1i 11 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
527, 39, 51pm2.61ne 3084 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 2999  wrex 3118  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253  ici 10254   · cmul 10257   / cdiv 11009  2c2 11406  cexp 13154  ccj 14213  abscabs 14351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator