MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs1m Structured version   Visualization version   GIF version

Theorem abs1m 15243
Description: For any complex number, there exists a unit-magnitude multiplier that produces its absolute value. Part of proof of Theorem 13-2.12 of [Gleason] p. 195. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
abs1m (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem abs1m
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
2 abs0 15192 . . . . . 6 (abs‘0) = 0
31, 2eqtrdi 2782 . . . . 5 (𝐴 = 0 → (abs‘𝐴) = 0)
4 oveq2 7354 . . . . 5 (𝐴 = 0 → (𝑥 · 𝐴) = (𝑥 · 0))
53, 4eqeq12d 2747 . . . 4 (𝐴 = 0 → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ 0 = (𝑥 · 0)))
65anbi2d 630 . . 3 (𝐴 = 0 → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
76rexbidv 3156 . 2 (𝐴 = 0 → (∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))))
8 simpl 482 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
98cjcld 15103 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (∗‘𝐴) ∈ ℂ)
10 abscl 15185 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1110adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ)
1211recnd 11140 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ)
13 abs00 15196 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0))
1413necon3bid 2972 . . . . 5 (𝐴 ∈ ℂ → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1514biimpar 477 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0)
169, 12, 15divcld 11897 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ)
17 absdiv 15202 . . . . 5 (((∗‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
189, 12, 15, 17syl3anc 1373 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))))
19 abscj 15186 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴))
2019adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(∗‘𝐴)) = (abs‘𝐴))
21 absidm 15231 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2221adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
2320, 22oveq12d 7364 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘(∗‘𝐴)) / (abs‘(abs‘𝐴))) = ((abs‘𝐴) / (abs‘𝐴)))
2412, 15dividd 11895 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) / (abs‘𝐴)) = 1)
2518, 23, 243eqtrd 2770 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1)
268, 9, 12, 15divassd 11932 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
2712sqvald 14050 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
28 absvalsq 15187 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
2928adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
3027, 29eqtr3d 2768 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((abs‘𝐴) · (abs‘𝐴)) = (𝐴 · (∗‘𝐴)))
3112, 12, 15, 30mvllmuld 11953 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = ((𝐴 · (∗‘𝐴)) / (abs‘𝐴)))
3216, 8mulcomd 11133 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((∗‘𝐴) / (abs‘𝐴)) · 𝐴) = (𝐴 · ((∗‘𝐴) / (abs‘𝐴))))
3326, 31, 323eqtr4d 2776 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
34 fveqeq2 6831 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝑥) = 1 ↔ (abs‘((∗‘𝐴) / (abs‘𝐴))) = 1))
35 oveq1 7353 . . . . . 6 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (𝑥 · 𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))
3635eqeq2d 2742 . . . . 5 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → ((abs‘𝐴) = (𝑥 · 𝐴) ↔ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴)))
3734, 36anbi12d 632 . . . 4 (𝑥 = ((∗‘𝐴) / (abs‘𝐴)) → (((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)) ↔ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))))
3837rspcev 3572 . . 3 ((((∗‘𝐴) / (abs‘𝐴)) ∈ ℂ ∧ ((abs‘((∗‘𝐴) / (abs‘𝐴))) = 1 ∧ (abs‘𝐴) = (((∗‘𝐴) / (abs‘𝐴)) · 𝐴))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
3916, 25, 33, 38syl12anc 836 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
40 ax-icn 11065 . . . 4 i ∈ ℂ
41 absi 15193 . . . . 5 (abs‘i) = 1
42 it0e0 12344 . . . . . 6 (i · 0) = 0
4342eqcomi 2740 . . . . 5 0 = (i · 0)
4441, 43pm3.2i 470 . . . 4 ((abs‘i) = 1 ∧ 0 = (i · 0))
45 fveqeq2 6831 . . . . . 6 (𝑥 = i → ((abs‘𝑥) = 1 ↔ (abs‘i) = 1))
46 oveq1 7353 . . . . . . 7 (𝑥 = i → (𝑥 · 0) = (i · 0))
4746eqeq2d 2742 . . . . . 6 (𝑥 = i → (0 = (𝑥 · 0) ↔ 0 = (i · 0)))
4845, 47anbi12d 632 . . . . 5 (𝑥 = i → (((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)) ↔ ((abs‘i) = 1 ∧ 0 = (i · 0))))
4948rspcev 3572 . . . 4 ((i ∈ ℂ ∧ ((abs‘i) = 1 ∧ 0 = (i · 0))) → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
5040, 44, 49mp2an 692 . . 3 𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0))
5150a1i 11 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ 0 = (𝑥 · 0)))
527, 39, 51pm2.61ne 3013 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((abs‘𝑥) = 1 ∧ (abs‘𝐴) = (𝑥 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007  ici 11008   · cmul 11011   / cdiv 11774  2c2 12180  cexp 13968  ccj 15003  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator