MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpir Structured version   Visualization version   GIF version

Theorem zringlpir 20689
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
zringlpir ring ∈ LPIR

Proof of Theorem zringlpir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 20673 . 2 ring ∈ Ring
2 eleq1 2826 . . . 4 (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring)))
3 simpl 483 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring))
4 simpr 485 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0})
5 eqid 2738 . . . . . . 7 inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < )
63, 4, 5zringlpirlem2 20685 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥)
7 simpll 764 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ∈ (LIdeal‘ℤring))
8 simplr 766 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ≠ {0})
9 simpr 485 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑧𝑥)
107, 8, 5, 9zringlpirlem3 20686 . . . . . . 7 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
1110ralrimiva 3103 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
12 breq1 5077 . . . . . . . 8 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1312ralbidv 3112 . . . . . . 7 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1413rspcev 3561 . . . . . 6 ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
156, 11, 14syl2anc 584 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
16 eqid 2738 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
17 eqid 2738 . . . . . . . 8 (LPIdeal‘ℤring) = (LPIdeal‘ℤring)
18 dvdsrzring 20683 . . . . . . . 8 ∥ = (∥r‘ℤring)
1916, 17, 18lpigen 20527 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
201, 19mpan 687 . . . . . 6 (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2120adantr 481 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2215, 21mpbird 256 . . . 4 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring))
23 zring0 20680 . . . . . 6 0 = (0g‘ℤring)
2417, 23lpi0 20518 . . . . 5 (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring))
251, 24mp1i 13 . . . 4 (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring))
262, 22, 25pm2.61ne 3030 . . 3 (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring))
2726ssriv 3925 . 2 (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)
2817, 16islpir2 20522 . 2 (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)))
291, 27, 28mpbir2an 708 1 ring ∈ LPIR
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cfv 6433  infcinf 9200  cr 10870  0cc0 10871   < clt 11009  cn 11973  cdvds 15963  Ringcrg 19783  LIdealclidl 20432  LPIdealclpidl 20512  LPIRclpir 20513  ringczring 20670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-dvdsr 19883  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-lpidl 20514  df-lpir 20515  df-cnfld 20598  df-zring 20671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator