Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zringlpir | Structured version Visualization version GIF version |
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
Ref | Expression |
---|---|
zringlpir | ⊢ ℤring ∈ LPIR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 20673 | . 2 ⊢ ℤring ∈ Ring | |
2 | eleq1 2826 | . . . 4 ⊢ (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring))) | |
3 | simpl 483 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring)) | |
4 | simpr 485 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0}) | |
5 | eqid 2738 | . . . . . . 7 ⊢ inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < ) | |
6 | 3, 4, 5 | zringlpirlem2 20685 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥) |
7 | simpll 764 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ (LIdeal‘ℤring)) | |
8 | simplr 766 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ≠ {0}) | |
9 | simpr 485 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) | |
10 | 7, 8, 5, 9 | zringlpirlem3 20686 | . . . . . . 7 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
11 | 10 | ralrimiva 3103 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
12 | breq1 5077 | . . . . . . . 8 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦 ∥ 𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) | |
13 | 12 | ralbidv 3112 | . . . . . . 7 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) |
14 | 13 | rspcev 3561 | . . . . . 6 ⊢ ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
15 | 6, 11, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
16 | eqid 2738 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
17 | eqid 2738 | . . . . . . . 8 ⊢ (LPIdeal‘ℤring) = (LPIdeal‘ℤring) | |
18 | dvdsrzring 20683 | . . . . . . . 8 ⊢ ∥ = (∥r‘ℤring) | |
19 | 16, 17, 18 | lpigen 20527 | . . . . . . 7 ⊢ ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
20 | 1, 19 | mpan 687 | . . . . . 6 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
21 | 20 | adantr 481 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
22 | 15, 21 | mpbird 256 | . . . 4 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring)) |
23 | zring0 20680 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
24 | 17, 23 | lpi0 20518 | . . . . 5 ⊢ (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring)) |
25 | 1, 24 | mp1i 13 | . . . 4 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring)) |
26 | 2, 22, 25 | pm2.61ne 3030 | . . 3 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring)) |
27 | 26 | ssriv 3925 | . 2 ⊢ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring) |
28 | 17, 16 | islpir2 20522 | . 2 ⊢ (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring))) |
29 | 1, 27, 28 | mpbir2an 708 | 1 ⊢ ℤring ∈ LPIR |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 ⊆ wss 3887 {csn 4561 class class class wbr 5074 ‘cfv 6433 infcinf 9200 ℝcr 10870 0cc0 10871 < clt 11009 ℕcn 11973 ∥ cdvds 15963 Ringcrg 19783 LIdealclidl 20432 LPIdealclpidl 20512 LPIRclpir 20513 ℤringczring 20670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-dvdsr 19883 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-sra 20434 df-rgmod 20435 df-lidl 20436 df-rsp 20437 df-lpidl 20514 df-lpir 20515 df-cnfld 20598 df-zring 20671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |