Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zringlpir | Structured version Visualization version GIF version |
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
Ref | Expression |
---|---|
zringlpir | ⊢ ℤring ∈ LPIR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 20256 | . 2 ⊢ ℤring ∈ Ring | |
2 | eleq1 2840 | . . . 4 ⊢ (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring))) | |
3 | simpl 486 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring)) | |
4 | simpr 488 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0}) | |
5 | eqid 2759 | . . . . . . 7 ⊢ inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < ) | |
6 | 3, 4, 5 | zringlpirlem2 20268 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥) |
7 | simpll 766 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ (LIdeal‘ℤring)) | |
8 | simplr 768 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ≠ {0}) | |
9 | simpr 488 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) | |
10 | 7, 8, 5, 9 | zringlpirlem3 20269 | . . . . . . 7 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
11 | 10 | ralrimiva 3114 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
12 | breq1 5040 | . . . . . . . 8 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦 ∥ 𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) | |
13 | 12 | ralbidv 3127 | . . . . . . 7 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) |
14 | 13 | rspcev 3544 | . . . . . 6 ⊢ ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
15 | 6, 11, 14 | syl2anc 587 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
16 | eqid 2759 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
17 | eqid 2759 | . . . . . . . 8 ⊢ (LPIdeal‘ℤring) = (LPIdeal‘ℤring) | |
18 | dvdsrzring 20266 | . . . . . . . 8 ⊢ ∥ = (∥r‘ℤring) | |
19 | 16, 17, 18 | lpigen 20112 | . . . . . . 7 ⊢ ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
20 | 1, 19 | mpan 689 | . . . . . 6 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
21 | 20 | adantr 484 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
22 | 15, 21 | mpbird 260 | . . . 4 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring)) |
23 | zring0 20263 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
24 | 17, 23 | lpi0 20103 | . . . . 5 ⊢ (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring)) |
25 | 1, 24 | mp1i 13 | . . . 4 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring)) |
26 | 2, 22, 25 | pm2.61ne 3037 | . . 3 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring)) |
27 | 26 | ssriv 3899 | . 2 ⊢ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring) |
28 | 17, 16 | islpir2 20107 | . 2 ⊢ (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring))) |
29 | 1, 27, 28 | mpbir2an 710 | 1 ⊢ ℤring ∈ LPIR |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∃wrex 3072 ∩ cin 3860 ⊆ wss 3861 {csn 4526 class class class wbr 5037 ‘cfv 6341 infcinf 8952 ℝcr 10588 0cc0 10589 < clt 10727 ℕcn 11688 ∥ cdvds 15669 Ringcrg 19380 LIdealclidl 20025 LPIdealclpidl 20097 LPIRclpir 20098 ℤringzring 20253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-sup 8953 df-inf 8954 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-rp 12445 df-fz 12954 df-fl 13225 df-mod 13301 df-seq 13433 df-exp 13494 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-dvds 15670 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-0g 16788 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-grp 18187 df-minusg 18188 df-sbg 18189 df-subg 18358 df-cmn 18990 df-mgp 19323 df-ur 19335 df-ring 19382 df-cring 19383 df-dvdsr 19477 df-subrg 19616 df-lmod 19719 df-lss 19787 df-lsp 19827 df-sra 20027 df-rgmod 20028 df-lidl 20029 df-rsp 20030 df-lpidl 20099 df-lpir 20100 df-cnfld 20182 df-zring 20254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |