![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringlpir | Structured version Visualization version GIF version |
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
Ref | Expression |
---|---|
zringlpir | ⊢ ℤring ∈ LPIR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21477 | . 2 ⊢ ℤring ∈ Ring | |
2 | eleq1 2826 | . . . 4 ⊢ (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring))) | |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring)) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0}) | |
5 | eqid 2734 | . . . . . . 7 ⊢ inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < ) | |
6 | 3, 4, 5 | zringlpirlem2 21491 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥) |
7 | simpll 767 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ (LIdeal‘ℤring)) | |
8 | simplr 769 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ≠ {0}) | |
9 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) | |
10 | 7, 8, 5, 9 | zringlpirlem3 21492 | . . . . . . 7 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
11 | 10 | ralrimiva 3143 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
12 | breq1 5150 | . . . . . . . 8 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦 ∥ 𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) | |
13 | 12 | ralbidv 3175 | . . . . . . 7 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) |
14 | 13 | rspcev 3621 | . . . . . 6 ⊢ ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
15 | 6, 11, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
16 | eqid 2734 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
17 | eqid 2734 | . . . . . . . 8 ⊢ (LPIdeal‘ℤring) = (LPIdeal‘ℤring) | |
18 | dvdsrzring 21489 | . . . . . . . 8 ⊢ ∥ = (∥r‘ℤring) | |
19 | 16, 17, 18 | lpigen 21362 | . . . . . . 7 ⊢ ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
20 | 1, 19 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
22 | 15, 21 | mpbird 257 | . . . 4 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring)) |
23 | zring0 21486 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
24 | 17, 23 | lpi0 21353 | . . . . 5 ⊢ (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring)) |
25 | 1, 24 | mp1i 13 | . . . 4 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring)) |
26 | 2, 22, 25 | pm2.61ne 3024 | . . 3 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring)) |
27 | 26 | ssriv 3998 | . 2 ⊢ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring) |
28 | 17, 16 | islpir2 21357 | . 2 ⊢ (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring))) |
29 | 1, 27, 28 | mpbir2an 711 | 1 ⊢ ℤring ∈ LPIR |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∩ cin 3961 ⊆ wss 3962 {csn 4630 class class class wbr 5147 ‘cfv 6562 infcinf 9478 ℝcr 11151 0cc0 11152 < clt 11292 ℕcn 12263 ∥ cdvds 16286 Ringcrg 20250 LIdealclidl 21233 LPIdealclpidl 21347 LPIRclpir 21348 ℤringczring 21474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-rp 13032 df-fz 13544 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-dvds 16287 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-subg 19153 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-dvdsr 20373 df-subrng 20562 df-subrg 20586 df-lmod 20876 df-lss 20947 df-lsp 20987 df-sra 21189 df-rgmod 21190 df-lidl 21235 df-rsp 21236 df-lpidl 21349 df-lpir 21350 df-cnfld 21382 df-zring 21475 |
This theorem is referenced by: zringpid 33559 |
Copyright terms: Public domain | W3C validator |