| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zringlpir | Structured version Visualization version GIF version | ||
| Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
| Ref | Expression |
|---|---|
| zringlpir | ⊢ ℤring ∈ LPIR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21460 | . 2 ⊢ ℤring ∈ Ring | |
| 2 | eleq1 2829 | . . . 4 ⊢ (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring))) | |
| 3 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring)) | |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0}) | |
| 5 | eqid 2737 | . . . . . . 7 ⊢ inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < ) | |
| 6 | 3, 4, 5 | zringlpirlem2 21474 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥) |
| 7 | simpll 767 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ∈ (LIdeal‘ℤring)) | |
| 8 | simplr 769 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑥 ≠ {0}) | |
| 9 | simpr 484 | . . . . . . . 8 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) | |
| 10 | 7, 8, 5, 9 | zringlpirlem3 21475 | . . . . . . 7 ⊢ (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧 ∈ 𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
| 11 | 10 | ralrimiva 3146 | . . . . . 6 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) |
| 12 | breq1 5146 | . . . . . . . 8 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦 ∥ 𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) | |
| 13 | 12 | ralbidv 3178 | . . . . . . 7 ⊢ (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧 ↔ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)) |
| 14 | 13 | rspcev 3622 | . . . . . 6 ⊢ ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
| 15 | 6, 11, 14 | syl2anc 584 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧) |
| 16 | eqid 2737 | . . . . . . . 8 ⊢ (LIdeal‘ℤring) = (LIdeal‘ℤring) | |
| 17 | eqid 2737 | . . . . . . . 8 ⊢ (LPIdeal‘ℤring) = (LPIdeal‘ℤring) | |
| 18 | dvdsrzring 21472 | . . . . . . . 8 ⊢ ∥ = (∥r‘ℤring) | |
| 19 | 16, 17, 18 | lpigen 21345 | . . . . . . 7 ⊢ ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
| 20 | 1, 19 | mpan 690 | . . . . . 6 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 𝑦 ∥ 𝑧)) |
| 22 | 15, 21 | mpbird 257 | . . . 4 ⊢ ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring)) |
| 23 | zring0 21469 | . . . . . 6 ⊢ 0 = (0g‘ℤring) | |
| 24 | 17, 23 | lpi0 21336 | . . . . 5 ⊢ (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring)) |
| 25 | 1, 24 | mp1i 13 | . . . 4 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring)) |
| 26 | 2, 22, 25 | pm2.61ne 3027 | . . 3 ⊢ (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring)) |
| 27 | 26 | ssriv 3987 | . 2 ⊢ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring) |
| 28 | 17, 16 | islpir2 21340 | . 2 ⊢ (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring))) |
| 29 | 1, 27, 28 | mpbir2an 711 | 1 ⊢ ℤring ∈ LPIR |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∩ cin 3950 ⊆ wss 3951 {csn 4626 class class class wbr 5143 ‘cfv 6561 infcinf 9481 ℝcr 11154 0cc0 11155 < clt 11295 ℕcn 12266 ∥ cdvds 16290 Ringcrg 20230 LIdealclidl 21216 LPIdealclpidl 21330 LPIRclpir 21331 ℤringczring 21457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-rp 13035 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-cring 20233 df-dvdsr 20357 df-subrng 20546 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-sra 21172 df-rgmod 21173 df-lidl 21218 df-rsp 21219 df-lpidl 21332 df-lpir 21333 df-cnfld 21365 df-zring 21458 |
| This theorem is referenced by: zringpid 33580 |
| Copyright terms: Public domain | W3C validator |