![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringlpir | Structured version Visualization version GIF version |
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
Ref | Expression |
---|---|
zringlpir | β’ β€ring β LPIR |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21221 | . 2 β’ β€ring β Ring | |
2 | eleq1 2820 | . . . 4 β’ (π₯ = {0} β (π₯ β (LPIdealββ€ring) β {0} β (LPIdealββ€ring))) | |
3 | simpl 482 | . . . . . . 7 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β π₯ β (LIdealββ€ring)) | |
4 | simpr 484 | . . . . . . 7 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β π₯ β {0}) | |
5 | eqid 2731 | . . . . . . 7 β’ inf((π₯ β© β), β, < ) = inf((π₯ β© β), β, < ) | |
6 | 3, 4, 5 | zringlpirlem2 21235 | . . . . . 6 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β inf((π₯ β© β), β, < ) β π₯) |
7 | simpll 764 | . . . . . . . 8 β’ (((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β§ π§ β π₯) β π₯ β (LIdealββ€ring)) | |
8 | simplr 766 | . . . . . . . 8 β’ (((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β§ π§ β π₯) β π₯ β {0}) | |
9 | simpr 484 | . . . . . . . 8 β’ (((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β§ π§ β π₯) β π§ β π₯) | |
10 | 7, 8, 5, 9 | zringlpirlem3 21236 | . . . . . . 7 β’ (((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β§ π§ β π₯) β inf((π₯ β© β), β, < ) β₯ π§) |
11 | 10 | ralrimiva 3145 | . . . . . 6 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β βπ§ β π₯ inf((π₯ β© β), β, < ) β₯ π§) |
12 | breq1 5152 | . . . . . . . 8 β’ (π¦ = inf((π₯ β© β), β, < ) β (π¦ β₯ π§ β inf((π₯ β© β), β, < ) β₯ π§)) | |
13 | 12 | ralbidv 3176 | . . . . . . 7 β’ (π¦ = inf((π₯ β© β), β, < ) β (βπ§ β π₯ π¦ β₯ π§ β βπ§ β π₯ inf((π₯ β© β), β, < ) β₯ π§)) |
14 | 13 | rspcev 3613 | . . . . . 6 β’ ((inf((π₯ β© β), β, < ) β π₯ β§ βπ§ β π₯ inf((π₯ β© β), β, < ) β₯ π§) β βπ¦ β π₯ βπ§ β π₯ π¦ β₯ π§) |
15 | 6, 11, 14 | syl2anc 583 | . . . . 5 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β βπ¦ β π₯ βπ§ β π₯ π¦ β₯ π§) |
16 | eqid 2731 | . . . . . . . 8 β’ (LIdealββ€ring) = (LIdealββ€ring) | |
17 | eqid 2731 | . . . . . . . 8 β’ (LPIdealββ€ring) = (LPIdealββ€ring) | |
18 | dvdsrzring 21233 | . . . . . . . 8 β’ β₯ = (β₯rββ€ring) | |
19 | 16, 17, 18 | lpigen 21095 | . . . . . . 7 β’ ((β€ring β Ring β§ π₯ β (LIdealββ€ring)) β (π₯ β (LPIdealββ€ring) β βπ¦ β π₯ βπ§ β π₯ π¦ β₯ π§)) |
20 | 1, 19 | mpan 687 | . . . . . 6 β’ (π₯ β (LIdealββ€ring) β (π₯ β (LPIdealββ€ring) β βπ¦ β π₯ βπ§ β π₯ π¦ β₯ π§)) |
21 | 20 | adantr 480 | . . . . 5 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β (π₯ β (LPIdealββ€ring) β βπ¦ β π₯ βπ§ β π₯ π¦ β₯ π§)) |
22 | 15, 21 | mpbird 256 | . . . 4 β’ ((π₯ β (LIdealββ€ring) β§ π₯ β {0}) β π₯ β (LPIdealββ€ring)) |
23 | zring0 21230 | . . . . . 6 β’ 0 = (0gββ€ring) | |
24 | 17, 23 | lpi0 21086 | . . . . 5 β’ (β€ring β Ring β {0} β (LPIdealββ€ring)) |
25 | 1, 24 | mp1i 13 | . . . 4 β’ (π₯ β (LIdealββ€ring) β {0} β (LPIdealββ€ring)) |
26 | 2, 22, 25 | pm2.61ne 3026 | . . 3 β’ (π₯ β (LIdealββ€ring) β π₯ β (LPIdealββ€ring)) |
27 | 26 | ssriv 3987 | . 2 β’ (LIdealββ€ring) β (LPIdealββ€ring) |
28 | 17, 16 | islpir2 21090 | . 2 β’ (β€ring β LPIR β (β€ring β Ring β§ (LIdealββ€ring) β (LPIdealββ€ring))) |
29 | 1, 27, 28 | mpbir2an 708 | 1 β’ β€ring β LPIR |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βwral 3060 βwrex 3069 β© cin 3948 β wss 3949 {csn 4629 class class class wbr 5149 βcfv 6544 infcinf 9439 βcr 11112 0cc0 11113 < clt 11253 βcn 12217 β₯ cdvds 16202 Ringcrg 20128 LIdealclidl 20929 LPIdealclpidl 21080 LPIRclpir 21081 β€ringczring 21218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-rp 12980 df-fz 13490 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-dvdsr 20249 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-lsp 20728 df-sra 20931 df-rgmod 20932 df-lidl 20933 df-rsp 20934 df-lpidl 21082 df-lpir 21083 df-cnfld 21146 df-zring 21219 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |