MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpir Structured version   Visualization version   GIF version

Theorem zringlpir 21377
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
zringlpir ring ∈ LPIR

Proof of Theorem zringlpir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 21359 . 2 ring ∈ Ring
2 eleq1 2816 . . . 4 (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring)))
3 simpl 482 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring))
4 simpr 484 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0})
5 eqid 2729 . . . . . . 7 inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < )
63, 4, 5zringlpirlem2 21373 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥)
7 simpll 766 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ∈ (LIdeal‘ℤring))
8 simplr 768 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ≠ {0})
9 simpr 484 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑧𝑥)
107, 8, 5, 9zringlpirlem3 21374 . . . . . . 7 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
1110ralrimiva 3125 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
12 breq1 5110 . . . . . . . 8 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1312ralbidv 3156 . . . . . . 7 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1413rspcev 3588 . . . . . 6 ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
156, 11, 14syl2anc 584 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
16 eqid 2729 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
17 eqid 2729 . . . . . . . 8 (LPIdeal‘ℤring) = (LPIdeal‘ℤring)
18 dvdsrzring 21371 . . . . . . . 8 ∥ = (∥r‘ℤring)
1916, 17, 18lpigen 21245 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
201, 19mpan 690 . . . . . 6 (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2120adantr 480 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2215, 21mpbird 257 . . . 4 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring))
23 zring0 21368 . . . . . 6 0 = (0g‘ℤring)
2417, 23lpi0 21236 . . . . 5 (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring))
251, 24mp1i 13 . . . 4 (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring))
262, 22, 25pm2.61ne 3010 . . 3 (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring))
2726ssriv 3950 . 2 (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)
2817, 16islpir2 21240 . 2 (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)))
291, 27, 28mpbir2an 711 1 ring ∈ LPIR
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  {csn 4589   class class class wbr 5107  cfv 6511  infcinf 9392  cr 11067  0cc0 11068   < clt 11208  cn 12186  cdvds 16222  Ringcrg 20142  LIdealclidl 21116  LPIdealclpidl 21230  LPIRclpir 21231  ringczring 21356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-dvdsr 20266  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-lpidl 21232  df-lpir 21233  df-cnfld 21265  df-zring 21357
This theorem is referenced by:  zringpid  33523
  Copyright terms: Public domain W3C validator