MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pcl Structured version   Visualization version   GIF version

Theorem ig1pcl 24772
Description: The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pcl.u 𝑈 = (LIdeal‘𝑃)
Assertion
Ref Expression
ig1pcl ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)

Proof of Theorem ig1pcl
StepHypRef Expression
1 fveq2 6673 . . 3 (𝐼 = {(0g𝑃)} → (𝐺𝐼) = (𝐺‘{(0g𝑃)}))
2 id 22 . . 3 (𝐼 = {(0g𝑃)} → 𝐼 = {(0g𝑃)})
31, 2eleq12d 2910 . 2 (𝐼 = {(0g𝑃)} → ((𝐺𝐼) ∈ 𝐼 ↔ (𝐺‘{(0g𝑃)}) ∈ {(0g𝑃)}))
4 ig1pval.p . . . . 5 𝑃 = (Poly1𝑅)
5 ig1pval.g . . . . 5 𝐺 = (idlGen1p𝑅)
6 eqid 2824 . . . . 5 (0g𝑃) = (0g𝑃)
7 ig1pcl.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 eqid 2824 . . . . 5 ( deg1𝑅) = ( deg1𝑅)
9 eqid 2824 . . . . 5 (Monic1p𝑅) = (Monic1p𝑅)
104, 5, 6, 7, 8, 9ig1pval3 24771 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ (Monic1p𝑅) ∧ (( deg1𝑅)‘(𝐺𝐼)) = inf((( deg1𝑅) “ (𝐼 ∖ {(0g𝑃)})), ℝ, < )))
1110simp1d 1138 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
12113expa 1114 . 2 (((𝑅 ∈ DivRing ∧ 𝐼𝑈) ∧ 𝐼 ≠ {(0g𝑃)}) → (𝐺𝐼) ∈ 𝐼)
13 drngring 19512 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
144, 5, 6ig1pval2 24770 . . . . 5 (𝑅 ∈ Ring → (𝐺‘{(0g𝑃)}) = (0g𝑃))
1513, 14syl 17 . . . 4 (𝑅 ∈ DivRing → (𝐺‘{(0g𝑃)}) = (0g𝑃))
16 fvex 6686 . . . . 5 (𝐺‘{(0g𝑃)}) ∈ V
1716elsn 4585 . . . 4 ((𝐺‘{(0g𝑃)}) ∈ {(0g𝑃)} ↔ (𝐺‘{(0g𝑃)}) = (0g𝑃))
1815, 17sylibr 236 . . 3 (𝑅 ∈ DivRing → (𝐺‘{(0g𝑃)}) ∈ {(0g𝑃)})
1918adantr 483 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺‘{(0g𝑃)}) ∈ {(0g𝑃)})
203, 12, 19pm2.61ne 3105 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  cdif 3936  {csn 4570  cima 5561  cfv 6358  infcinf 8908  cr 10539   < clt 10678  0gc0g 16716  Ringcrg 19300  DivRingcdr 19505  LIdealclidl 19945  Poly1cpl1 20348   deg1 cdg1 24651  Monic1pcmn1 24722  idlGen1pcig1p 24726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-drng 19507  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-lidl 19949  df-rlreg 20059  df-ascl 20090  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-vr1 20352  df-ply1 20353  df-coe1 20354  df-cnfld 20549  df-mdeg 24652  df-deg1 24653  df-mon1 24727  df-uc1p 24728  df-ig1p 24731
This theorem is referenced by:  ig1pdvds  24773  ig1prsp  24774  ply1lpir  24775
  Copyright terms: Public domain W3C validator