![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ig1pcl | Structured version Visualization version GIF version |
Description: The monic generator of an ideal is always in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
Ref | Expression |
---|---|
ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
ig1pcl.u | ⊢ 𝑈 = (LIdeal‘𝑃) |
Ref | Expression |
---|---|
ig1pcl | ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝐼 = {(0g‘𝑃)} → (𝐺‘𝐼) = (𝐺‘{(0g‘𝑃)})) | |
2 | id 22 | . . 3 ⊢ (𝐼 = {(0g‘𝑃)} → 𝐼 = {(0g‘𝑃)}) | |
3 | 1, 2 | eleq12d 2838 | . 2 ⊢ (𝐼 = {(0g‘𝑃)} → ((𝐺‘𝐼) ∈ 𝐼 ↔ (𝐺‘{(0g‘𝑃)}) ∈ {(0g‘𝑃)})) |
4 | ig1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | ig1pval.g | . . . . 5 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
6 | eqid 2740 | . . . . 5 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
7 | ig1pcl.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑃) | |
8 | eqid 2740 | . . . . 5 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
9 | eqid 2740 | . . . . 5 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
10 | 4, 5, 6, 7, 8, 9 | ig1pval3 26237 | . . . 4 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ {(0g‘𝑃)}) → ((𝐺‘𝐼) ∈ 𝐼 ∧ (𝐺‘𝐼) ∈ (Monic1p‘𝑅) ∧ ((deg1‘𝑅)‘(𝐺‘𝐼)) = inf(((deg1‘𝑅) “ (𝐼 ∖ {(0g‘𝑃)})), ℝ, < ))) |
11 | 10 | simp1d 1142 | . . 3 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ 𝐼) |
12 | 11 | 3expa 1118 | . 2 ⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) ∧ 𝐼 ≠ {(0g‘𝑃)}) → (𝐺‘𝐼) ∈ 𝐼) |
13 | drngring 20758 | . . . . 5 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
14 | 4, 5, 6 | ig1pval2 26236 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐺‘{(0g‘𝑃)}) = (0g‘𝑃)) |
15 | 13, 14 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝐺‘{(0g‘𝑃)}) = (0g‘𝑃)) |
16 | fvex 6933 | . . . . 5 ⊢ (𝐺‘{(0g‘𝑃)}) ∈ V | |
17 | 16 | elsn 4663 | . . . 4 ⊢ ((𝐺‘{(0g‘𝑃)}) ∈ {(0g‘𝑃)} ↔ (𝐺‘{(0g‘𝑃)}) = (0g‘𝑃)) |
18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝐺‘{(0g‘𝑃)}) ∈ {(0g‘𝑃)}) |
19 | 18 | adantr 480 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘{(0g‘𝑃)}) ∈ {(0g‘𝑃)}) |
20 | 3, 12, 19 | pm2.61ne 3033 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑈) → (𝐺‘𝐼) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 “ cima 5703 ‘cfv 6573 infcinf 9510 ℝcr 11183 < clt 11324 0gc0g 17499 Ringcrg 20260 DivRingcdr 20751 LIdealclidl 21239 Poly1cpl1 22199 deg1cdg1 26113 Monic1pcmn1 26185 idlGen1pcig1p 26189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-subrng 20572 df-subrg 20597 df-rlreg 20716 df-drng 20753 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-cnfld 21388 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-vr1 22203 df-ply1 22204 df-coe1 22205 df-mdeg 26114 df-deg1 26115 df-mon1 26190 df-uc1p 26191 df-ig1p 26194 |
This theorem is referenced by: ig1pdvds 26239 ig1prsp 26240 ply1lpir 26241 ig1pnunit 33586 minplycl 33699 minplyann 33702 minplyirred 33704 irngnminplynz 33705 |
Copyright terms: Public domain | W3C validator |