MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Visualization version   GIF version

Theorem padicabv 27556
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.f 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
Assertion
Ref Expression
padicabv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑄   𝑥,𝑃
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem padicabv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3 𝐴 = (AbsVal‘𝑄)
21a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐴 = (AbsVal‘𝑄))
3 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
43qrngbas 27545 . . 3 ℚ = (Base‘𝑄)
54a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → ℚ = (Base‘𝑄))
6 qex 12969 . . 3 ℚ ∈ V
7 cnfldadd 21278 . . . 4 + = (+g‘ℂfld)
83, 7ressplusg 17264 . . 3 (ℚ ∈ V → + = (+g𝑄))
96, 8mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → + = (+g𝑄))
10 cnfldmul 21280 . . . 4 · = (.r‘ℂfld)
113, 10ressmulr 17281 . . 3 (ℚ ∈ V → · = (.r𝑄))
126, 11mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → · = (.r𝑄))
133qrng0 27547 . . 3 0 = (0g𝑄)
1413a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 = (0g𝑄))
153qdrng 27546 . . 3 𝑄 ∈ DivRing
16 drngring 20624 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1715, 16mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑄 ∈ Ring)
18 0red 11241 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 = 0) → 0 ∈ ℝ)
19 ioossre 13411 . . . . . . 7 (0(,)1) ⊆ ℝ
20 simpr 484 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ (0(,)1))
2119, 20sselid 3976 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
2221ad2antrr 725 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ∈ ℝ)
23 eliooord 13409 . . . . . . . . . 10 (𝑁 ∈ (0(,)1) → (0 < 𝑁𝑁 < 1))
2423adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (0 < 𝑁𝑁 < 1))
2524simpld 494 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 < 𝑁)
2621, 25elrpd 13039 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
2726rpne0d 13047 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ≠ 0)
2827ad2antrr 725 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ≠ 0)
29 df-ne 2937 . . . . . 6 (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0)
30 pcqcl 16818 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3130adantlr 714 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3231anassrs 467 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3329, 32sylan2br 594 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3422, 28, 33reexpclzd 14237 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑁↑(𝑃 pCnt 𝑥)) ∈ ℝ)
3518, 34ifclda 4559 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) ∈ ℝ)
36 padic.f . . 3 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
3735, 36fmptd 7118 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹:ℚ⟶ℝ)
38 0z 12593 . . . 4 0 ∈ ℤ
39 zq 12962 . . . 4 (0 ∈ ℤ → 0 ∈ ℚ)
4038, 39ax-mp 5 . . 3 0 ∈ ℚ
41 iftrue 4530 . . . 4 (𝑥 = 0 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = 0)
42 c0ex 11232 . . . 4 0 ∈ V
4341, 36, 42fvmpt 6999 . . 3 (0 ∈ ℚ → (𝐹‘0) = 0)
4440, 43mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (𝐹‘0) = 0)
45213ad2ant1 1131 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑁 ∈ ℝ)
46 pcqcl 16818 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
4746adantlr 714 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
48473impb 1113 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
49253ad2ant1 1131 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < 𝑁)
50 expgt0 14086 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃 pCnt 𝑦) ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
5145, 48, 49, 50syl3anc 1369 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
52 eqeq1 2732 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
53 oveq2 7422 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑦))
5453oveq2d 7430 . . . . . . 7 (𝑥 = 𝑦 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑦)))
5552, 54ifbieq2d 4550 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
56 ovex 7447 . . . . . . 7 (𝑁↑(𝑃 pCnt 𝑦)) ∈ V
5742, 56ifex 4574 . . . . . 6 if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) ∈ V
5855, 36, 57fvmpt 6999 . . . . 5 (𝑦 ∈ ℚ → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
59583ad2ant2 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
60 simp3 1136 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑦 ≠ 0)
6160neneqd 2941 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → ¬ 𝑦 = 0)
6261iffalsed 4535 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) = (𝑁↑(𝑃 pCnt 𝑦)))
6359, 62eqtrd 2768 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
6451, 63breqtrrd 5170 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝐹𝑦))
65 pcqmul 16815 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
66653adant1r 1175 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
6766oveq2d 7430 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))))
6821recnd 11266 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
69683ad2ant1 1131 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℂ)
70273ad2ant1 1131 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ≠ 0)
71473adant3 1130 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
72 simp1l 1195 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑃 ∈ ℙ)
73 simp3l 1199 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℚ)
74 simp3r 1200 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ≠ 0)
75 pcqcl 16818 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
7672, 73, 74, 75syl12anc 836 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
77 expaddz 14097 . . . . 5 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑃 pCnt 𝑦) ∈ ℤ ∧ (𝑃 pCnt 𝑧) ∈ ℤ)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7869, 70, 71, 76, 77syl22anc 838 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7967, 78eqtrd 2768 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
80 simp2l 1197 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℚ)
81 qmulcl 12975 . . . . . 6 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 · 𝑧) ∈ ℚ)
8280, 73, 81syl2anc 583 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ∈ ℚ)
83 eqeq1 2732 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0))
84 oveq2 7422 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 · 𝑧)))
8584oveq2d 7430 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
8683, 85ifbieq2d 4550 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
87 ovex 7447 . . . . . . 7 (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) ∈ V
8842, 87ifex 4574 . . . . . 6 if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) ∈ V
8986, 36, 88fvmpt 6999 . . . . 5 ((𝑦 · 𝑧) ∈ ℚ → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
9082, 89syl 17 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
91 qcn 12971 . . . . . . . 8 (𝑦 ∈ ℚ → 𝑦 ∈ ℂ)
9280, 91syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℂ)
93 qcn 12971 . . . . . . . 8 (𝑧 ∈ ℚ → 𝑧 ∈ ℂ)
9473, 93syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℂ)
95 simp2r 1198 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ≠ 0)
9692, 94, 95, 74mulne0d 11890 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ≠ 0)
9796neneqd 2941 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ (𝑦 · 𝑧) = 0)
9897iffalsed 4535 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
9990, 98eqtrd 2768 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
100633expb 1118 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
1011003adant3 1130 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
102 eqeq1 2732 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
103 oveq2 7422 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑧))
104103oveq2d 7430 . . . . . . . 8 (𝑥 = 𝑧 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑧)))
105102, 104ifbieq2d 4550 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
106 ovex 7447 . . . . . . . 8 (𝑁↑(𝑃 pCnt 𝑧)) ∈ V
10742, 106ifex 4574 . . . . . . 7 if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) ∈ V
108105, 36, 107fvmpt 6999 . . . . . 6 (𝑧 ∈ ℚ → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
10973, 108syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
11074neneqd 2941 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ 𝑧 = 0)
111110iffalsed 4535 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) = (𝑁↑(𝑃 pCnt 𝑧)))
112109, 111eqtrd 2768 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = (𝑁↑(𝑃 pCnt 𝑧)))
113101, 112oveq12d 7432 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
11479, 99, 1133eqtr4d 2778 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
115 iftrue 4530 . . . . 5 ((𝑦 + 𝑧) = 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = 0)
116115breq1d 5152 . . . 4 ((𝑦 + 𝑧) = 0 → (if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ↔ 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
117 ifnefalse 4536 . . . . . 6 ((𝑦 + 𝑧) ≠ 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
118117adantl 481 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
11971adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
120119zred 12690 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℝ)
12176adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℤ)
122121zred 12690 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℝ)
123213ad2ant1 1131 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ)
124123ad2antrr 725 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ∈ ℝ)
12570ad2antrr 725 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ≠ 0)
12672adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑃 ∈ ℙ)
127 qaddcl 12973 . . . . . . . . . . . 12 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 + 𝑧) ∈ ℚ)
12880, 73, 127syl2anc 583 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) ∈ ℚ)
129128adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ∈ ℚ)
130 simpr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ≠ 0)
131 pcqcl 16818 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑦 + 𝑧) ∈ ℚ ∧ (𝑦 + 𝑧) ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
132126, 129, 130, 131syl12anc 836 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
133132adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
134124, 125, 133reexpclzd 14237 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
135119adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ∈ ℤ)
136124, 125, 135reexpclzd 14237 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
137 simpl1 1189 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)))
138137, 21syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ)
139137, 27syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ≠ 0)
140138, 139, 119reexpclzd 14237 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
141138, 139, 121reexpclzd 14237 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
142140, 141readdcld 11267 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
143142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
144126adantr 480 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑃 ∈ ℙ)
14580ad2antrr 725 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑦 ∈ ℚ)
14673ad2antrr 725 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑧 ∈ ℚ)
147 simpr 484 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧))
148144, 145, 146, 147pcadd 16851 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
149137, 26syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ+)
15024simprd 495 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 < 1)
151137, 150syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 < 1)
152149, 119, 132, 151ltexp2rd 14236 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
153152notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
154132zred 12690 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℝ)
155120, 154lenltd 11384 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦)))
156138, 139, 132reexpclzd 14237 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
157156, 140lenltd 11384 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
158153, 155, 1573bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦))))
159158biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
160148, 159syldan 590 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
161263ad2ant1 1131 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ+)
162161, 76rpexpcld 14235 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
163162adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
164163rpge0d 13046 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑧)))
165140, 141addge01d 11826 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
166164, 165mpbid 231 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
167166adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
168134, 136, 143, 160, 167letrd 11395 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
169156adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
170141adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
171142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
172126adantr 480 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑃 ∈ ℙ)
17373ad2antrr 725 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑧 ∈ ℚ)
17480ad2antrr 725 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑦 ∈ ℚ)
175 simpr 484 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦))
176172, 173, 174, 175pcadd 16851 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑧 + 𝑦)))
17792, 94addcomd 11440 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
178177oveq2d 7430 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
179178ad2antrr 725 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
180176, 179breqtrrd 5170 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
181149, 121, 132, 151ltexp2rd 14236 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
182181notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
183122, 154lenltd 11384 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧)))
184156, 141lenltd 11384 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
185182, 183, 1843bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧))))
186185biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
187180, 186syldan 590 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
188161, 71rpexpcld 14235 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
189188adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
190189rpge0d 13046 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑦)))
191141, 140addge02d 11827 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
192190, 191mpbid 231 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
193192adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
194169, 170, 171, 187, 193letrd 11395 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
195120, 122, 168, 194lecasei 11344 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
196118, 195eqbrtrd 5164 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
197188, 162rpaddcld 13057 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ+)
198197rpge0d 13046 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
199116, 196, 198pm2.61ne 3023 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
200 eqeq1 2732 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑥 = 0 ↔ (𝑦 + 𝑧) = 0))
201 oveq2 7422 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 + 𝑧)))
202201oveq2d 7430 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
203200, 202ifbieq2d 4550 . . . . 5 (𝑥 = (𝑦 + 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
204 ovex 7447 . . . . . 6 (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ V
20542, 204ifex 4574 . . . . 5 if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ∈ V
206203, 36, 205fvmpt 6999 . . . 4 ((𝑦 + 𝑧) ∈ ℚ → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
207128, 206syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
208101, 112oveq12d 7432 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) + (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
209199, 207, 2083brtr4d 5174 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
2102, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209isabvd 20693 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  ifcif 4524   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cle 11273  cz 12582  cq 12956  +crp 13000  (,)cioo 13350  cexp 14052  cprime 16635   pCnt cpc 16798  Basecbs 17173  s cress 17202  +gcplusg 17226  .rcmulr 17227  0gc0g 17414  Ringcrg 20166  DivRingcdr 20617  AbsValcabv 20689  fldccnfld 21272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-ioo 13354  df-ico 13356  df-fz 13511  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-prm 16636  df-pc 16799  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-subg 19071  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-subrng 20476  df-subrg 20501  df-drng 20619  df-abv 20690  df-cnfld 21273
This theorem is referenced by:  padicabvf  27557  padicabvcxp  27558
  Copyright terms: Public domain W3C validator