MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Visualization version   GIF version

Theorem padicabv 27598
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.f 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
Assertion
Ref Expression
padicabv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑄   𝑥,𝑃
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem padicabv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3 𝐴 = (AbsVal‘𝑄)
21a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐴 = (AbsVal‘𝑄))
3 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
43qrngbas 27587 . . 3 ℚ = (Base‘𝑄)
54a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → ℚ = (Base‘𝑄))
6 qex 12982 . . 3 ℚ ∈ V
7 cnfldadd 21326 . . . 4 + = (+g‘ℂfld)
83, 7ressplusg 17310 . . 3 (ℚ ∈ V → + = (+g𝑄))
96, 8mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → + = (+g𝑄))
10 cnfldmul 21328 . . . 4 · = (.r‘ℂfld)
113, 10ressmulr 17326 . . 3 (ℚ ∈ V → · = (.r𝑄))
126, 11mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → · = (.r𝑄))
133qrng0 27589 . . 3 0 = (0g𝑄)
1413a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 = (0g𝑄))
153qdrng 27588 . . 3 𝑄 ∈ DivRing
16 drngring 20701 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1715, 16mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑄 ∈ Ring)
18 0red 11243 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 = 0) → 0 ∈ ℝ)
19 ioossre 13429 . . . . . . 7 (0(,)1) ⊆ ℝ
20 simpr 484 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ (0(,)1))
2119, 20sselid 3961 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
2221ad2antrr 726 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ∈ ℝ)
23 eliooord 13427 . . . . . . . . . 10 (𝑁 ∈ (0(,)1) → (0 < 𝑁𝑁 < 1))
2423adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (0 < 𝑁𝑁 < 1))
2524simpld 494 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 < 𝑁)
2621, 25elrpd 13053 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
2726rpne0d 13061 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ≠ 0)
2827ad2antrr 726 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ≠ 0)
29 df-ne 2934 . . . . . 6 (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0)
30 pcqcl 16881 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3130adantlr 715 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3231anassrs 467 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3329, 32sylan2br 595 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3422, 28, 33reexpclzd 14272 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑁↑(𝑃 pCnt 𝑥)) ∈ ℝ)
3518, 34ifclda 4541 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) ∈ ℝ)
36 padic.f . . 3 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
3735, 36fmptd 7109 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹:ℚ⟶ℝ)
38 0z 12604 . . . 4 0 ∈ ℤ
39 zq 12975 . . . 4 (0 ∈ ℤ → 0 ∈ ℚ)
4038, 39ax-mp 5 . . 3 0 ∈ ℚ
41 iftrue 4511 . . . 4 (𝑥 = 0 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = 0)
42 c0ex 11234 . . . 4 0 ∈ V
4341, 36, 42fvmpt 6991 . . 3 (0 ∈ ℚ → (𝐹‘0) = 0)
4440, 43mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (𝐹‘0) = 0)
45213ad2ant1 1133 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑁 ∈ ℝ)
46 pcqcl 16881 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
4746adantlr 715 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
48473impb 1114 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
49253ad2ant1 1133 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < 𝑁)
50 expgt0 14118 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃 pCnt 𝑦) ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
5145, 48, 49, 50syl3anc 1373 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
52 eqeq1 2740 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
53 oveq2 7418 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑦))
5453oveq2d 7426 . . . . . . 7 (𝑥 = 𝑦 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑦)))
5552, 54ifbieq2d 4532 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
56 ovex 7443 . . . . . . 7 (𝑁↑(𝑃 pCnt 𝑦)) ∈ V
5742, 56ifex 4556 . . . . . 6 if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) ∈ V
5855, 36, 57fvmpt 6991 . . . . 5 (𝑦 ∈ ℚ → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
59583ad2ant2 1134 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
60 simp3 1138 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑦 ≠ 0)
6160neneqd 2938 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → ¬ 𝑦 = 0)
6261iffalsed 4516 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) = (𝑁↑(𝑃 pCnt 𝑦)))
6359, 62eqtrd 2771 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
6451, 63breqtrrd 5152 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝐹𝑦))
65 pcqmul 16878 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
66653adant1r 1178 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
6766oveq2d 7426 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))))
6821recnd 11268 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
69683ad2ant1 1133 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℂ)
70273ad2ant1 1133 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ≠ 0)
71473adant3 1132 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
72 simp1l 1198 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑃 ∈ ℙ)
73 simp3l 1202 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℚ)
74 simp3r 1203 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ≠ 0)
75 pcqcl 16881 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
7672, 73, 74, 75syl12anc 836 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
77 expaddz 14129 . . . . 5 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑃 pCnt 𝑦) ∈ ℤ ∧ (𝑃 pCnt 𝑧) ∈ ℤ)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7869, 70, 71, 76, 77syl22anc 838 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7967, 78eqtrd 2771 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
80 simp2l 1200 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℚ)
81 qmulcl 12988 . . . . . 6 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 · 𝑧) ∈ ℚ)
8280, 73, 81syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ∈ ℚ)
83 eqeq1 2740 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0))
84 oveq2 7418 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 · 𝑧)))
8584oveq2d 7426 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
8683, 85ifbieq2d 4532 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
87 ovex 7443 . . . . . . 7 (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) ∈ V
8842, 87ifex 4556 . . . . . 6 if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) ∈ V
8986, 36, 88fvmpt 6991 . . . . 5 ((𝑦 · 𝑧) ∈ ℚ → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
9082, 89syl 17 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
91 qcn 12984 . . . . . . . 8 (𝑦 ∈ ℚ → 𝑦 ∈ ℂ)
9280, 91syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℂ)
93 qcn 12984 . . . . . . . 8 (𝑧 ∈ ℚ → 𝑧 ∈ ℂ)
9473, 93syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℂ)
95 simp2r 1201 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ≠ 0)
9692, 94, 95, 74mulne0d 11894 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ≠ 0)
9796neneqd 2938 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ (𝑦 · 𝑧) = 0)
9897iffalsed 4516 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
9990, 98eqtrd 2771 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
100633expb 1120 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
1011003adant3 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
102 eqeq1 2740 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
103 oveq2 7418 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑧))
104103oveq2d 7426 . . . . . . . 8 (𝑥 = 𝑧 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑧)))
105102, 104ifbieq2d 4532 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
106 ovex 7443 . . . . . . . 8 (𝑁↑(𝑃 pCnt 𝑧)) ∈ V
10742, 106ifex 4556 . . . . . . 7 if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) ∈ V
108105, 36, 107fvmpt 6991 . . . . . 6 (𝑧 ∈ ℚ → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
10973, 108syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
11074neneqd 2938 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ 𝑧 = 0)
111110iffalsed 4516 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) = (𝑁↑(𝑃 pCnt 𝑧)))
112109, 111eqtrd 2771 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = (𝑁↑(𝑃 pCnt 𝑧)))
113101, 112oveq12d 7428 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
11479, 99, 1133eqtr4d 2781 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
115 iftrue 4511 . . . . 5 ((𝑦 + 𝑧) = 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = 0)
116115breq1d 5134 . . . 4 ((𝑦 + 𝑧) = 0 → (if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ↔ 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
117 ifnefalse 4517 . . . . . 6 ((𝑦 + 𝑧) ≠ 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
118117adantl 481 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
11971adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
120119zred 12702 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℝ)
12176adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℤ)
122121zred 12702 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℝ)
123213ad2ant1 1133 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ)
124123ad2antrr 726 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ∈ ℝ)
12570ad2antrr 726 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ≠ 0)
12672adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑃 ∈ ℙ)
127 qaddcl 12986 . . . . . . . . . . . 12 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 + 𝑧) ∈ ℚ)
12880, 73, 127syl2anc 584 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) ∈ ℚ)
129128adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ∈ ℚ)
130 simpr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ≠ 0)
131 pcqcl 16881 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑦 + 𝑧) ∈ ℚ ∧ (𝑦 + 𝑧) ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
132126, 129, 130, 131syl12anc 836 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
133132adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
134124, 125, 133reexpclzd 14272 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
135119adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ∈ ℤ)
136124, 125, 135reexpclzd 14272 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
137 simpl1 1192 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)))
138137, 21syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ)
139137, 27syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ≠ 0)
140138, 139, 119reexpclzd 14272 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
141138, 139, 121reexpclzd 14272 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
142140, 141readdcld 11269 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
143142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
144126adantr 480 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑃 ∈ ℙ)
14580ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑦 ∈ ℚ)
14673ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑧 ∈ ℚ)
147 simpr 484 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧))
148144, 145, 146, 147pcadd 16914 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
149137, 26syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ+)
15024simprd 495 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 < 1)
151137, 150syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 < 1)
152149, 119, 132, 151ltexp2rd 14271 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
153152notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
154132zred 12702 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℝ)
155120, 154lenltd 11386 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦)))
156138, 139, 132reexpclzd 14272 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
157156, 140lenltd 11386 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
158153, 155, 1573bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦))))
159158biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
160148, 159syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
161263ad2ant1 1133 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ+)
162161, 76rpexpcld 14270 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
163162adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
164163rpge0d 13060 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑧)))
165140, 141addge01d 11830 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
166164, 165mpbid 232 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
167166adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
168134, 136, 143, 160, 167letrd 11397 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
169156adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
170141adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
171142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
172126adantr 480 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑃 ∈ ℙ)
17373ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑧 ∈ ℚ)
17480ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑦 ∈ ℚ)
175 simpr 484 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦))
176172, 173, 174, 175pcadd 16914 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑧 + 𝑦)))
17792, 94addcomd 11442 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
178177oveq2d 7426 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
179178ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
180176, 179breqtrrd 5152 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
181149, 121, 132, 151ltexp2rd 14271 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
182181notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
183122, 154lenltd 11386 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧)))
184156, 141lenltd 11386 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
185182, 183, 1843bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧))))
186185biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
187180, 186syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
188161, 71rpexpcld 14270 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
189188adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
190189rpge0d 13060 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑦)))
191141, 140addge02d 11831 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
192190, 191mpbid 232 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
193192adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
194169, 170, 171, 187, 193letrd 11397 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
195120, 122, 168, 194lecasei 11346 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
196118, 195eqbrtrd 5146 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
197188, 162rpaddcld 13071 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ+)
198197rpge0d 13060 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
199116, 196, 198pm2.61ne 3018 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
200 eqeq1 2740 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑥 = 0 ↔ (𝑦 + 𝑧) = 0))
201 oveq2 7418 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 + 𝑧)))
202201oveq2d 7426 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
203200, 202ifbieq2d 4532 . . . . 5 (𝑥 = (𝑦 + 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
204 ovex 7443 . . . . . 6 (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ V
20542, 204ifex 4556 . . . . 5 if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ∈ V
206203, 36, 205fvmpt 6991 . . . 4 ((𝑦 + 𝑧) ∈ ℚ → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
207128, 206syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
208101, 112oveq12d 7428 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) + (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
209199, 207, 2083brtr4d 5156 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
2102, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209isabvd 20777 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cz 12593  cq 12969  +crp 13013  (,)cioo 13367  cexp 14084  cprime 16695   pCnt cpc 16861  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Ringcrg 20198  DivRingcdr 20694  AbsValcabv 20773  fldccnfld 21320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-ioo 13371  df-ico 13373  df-fz 13530  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696  df-pc 16862  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-subrng 20511  df-subrg 20535  df-drng 20696  df-abv 20774  df-cnfld 21321
This theorem is referenced by:  padicabvf  27599  padicabvcxp  27600
  Copyright terms: Public domain W3C validator