MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Visualization version   GIF version

Theorem padicabv 26778
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.f 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
Assertion
Ref Expression
padicabv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑄   𝑥,𝑃
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem padicabv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3 𝐴 = (AbsVal‘𝑄)
21a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐴 = (AbsVal‘𝑄))
3 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
43qrngbas 26767 . . 3 ℚ = (Base‘𝑄)
54a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → ℚ = (Base‘𝑄))
6 qex 12701 . . 3 ℚ ∈ V
7 cnfldadd 20602 . . . 4 + = (+g‘ℂfld)
83, 7ressplusg 17000 . . 3 (ℚ ∈ V → + = (+g𝑄))
96, 8mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → + = (+g𝑄))
10 cnfldmul 20603 . . . 4 · = (.r‘ℂfld)
113, 10ressmulr 17017 . . 3 (ℚ ∈ V → · = (.r𝑄))
126, 11mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → · = (.r𝑄))
133qrng0 26769 . . 3 0 = (0g𝑄)
1413a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 = (0g𝑄))
153qdrng 26768 . . 3 𝑄 ∈ DivRing
16 drngring 19998 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1715, 16mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑄 ∈ Ring)
18 0red 10978 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 = 0) → 0 ∈ ℝ)
19 ioossre 13140 . . . . . . 7 (0(,)1) ⊆ ℝ
20 simpr 485 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ (0(,)1))
2119, 20sselid 3919 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
2221ad2antrr 723 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ∈ ℝ)
23 eliooord 13138 . . . . . . . . . 10 (𝑁 ∈ (0(,)1) → (0 < 𝑁𝑁 < 1))
2423adantl 482 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (0 < 𝑁𝑁 < 1))
2524simpld 495 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 < 𝑁)
2621, 25elrpd 12769 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
2726rpne0d 12777 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ≠ 0)
2827ad2antrr 723 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ≠ 0)
29 df-ne 2944 . . . . . 6 (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0)
30 pcqcl 16557 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3130adantlr 712 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3231anassrs 468 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3329, 32sylan2br 595 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3422, 28, 33reexpclzd 13964 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑁↑(𝑃 pCnt 𝑥)) ∈ ℝ)
3518, 34ifclda 4494 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) ∈ ℝ)
36 padic.f . . 3 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
3735, 36fmptd 6988 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹:ℚ⟶ℝ)
38 0z 12330 . . . 4 0 ∈ ℤ
39 zq 12694 . . . 4 (0 ∈ ℤ → 0 ∈ ℚ)
4038, 39ax-mp 5 . . 3 0 ∈ ℚ
41 iftrue 4465 . . . 4 (𝑥 = 0 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = 0)
42 c0ex 10969 . . . 4 0 ∈ V
4341, 36, 42fvmpt 6875 . . 3 (0 ∈ ℚ → (𝐹‘0) = 0)
4440, 43mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (𝐹‘0) = 0)
45213ad2ant1 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑁 ∈ ℝ)
46 pcqcl 16557 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
4746adantlr 712 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
48473impb 1114 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
49253ad2ant1 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < 𝑁)
50 expgt0 13816 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃 pCnt 𝑦) ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
5145, 48, 49, 50syl3anc 1370 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
52 eqeq1 2742 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
53 oveq2 7283 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑦))
5453oveq2d 7291 . . . . . . 7 (𝑥 = 𝑦 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑦)))
5552, 54ifbieq2d 4485 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
56 ovex 7308 . . . . . . 7 (𝑁↑(𝑃 pCnt 𝑦)) ∈ V
5742, 56ifex 4509 . . . . . 6 if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) ∈ V
5855, 36, 57fvmpt 6875 . . . . 5 (𝑦 ∈ ℚ → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
59583ad2ant2 1133 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
60 simp3 1137 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑦 ≠ 0)
6160neneqd 2948 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → ¬ 𝑦 = 0)
6261iffalsed 4470 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) = (𝑁↑(𝑃 pCnt 𝑦)))
6359, 62eqtrd 2778 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
6451, 63breqtrrd 5102 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝐹𝑦))
65 pcqmul 16554 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
66653adant1r 1176 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
6766oveq2d 7291 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))))
6821recnd 11003 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
69683ad2ant1 1132 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℂ)
70273ad2ant1 1132 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ≠ 0)
71473adant3 1131 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
72 simp1l 1196 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑃 ∈ ℙ)
73 simp3l 1200 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℚ)
74 simp3r 1201 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ≠ 0)
75 pcqcl 16557 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
7672, 73, 74, 75syl12anc 834 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
77 expaddz 13827 . . . . 5 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑃 pCnt 𝑦) ∈ ℤ ∧ (𝑃 pCnt 𝑧) ∈ ℤ)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7869, 70, 71, 76, 77syl22anc 836 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7967, 78eqtrd 2778 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
80 simp2l 1198 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℚ)
81 qmulcl 12707 . . . . . 6 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 · 𝑧) ∈ ℚ)
8280, 73, 81syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ∈ ℚ)
83 eqeq1 2742 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0))
84 oveq2 7283 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 · 𝑧)))
8584oveq2d 7291 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
8683, 85ifbieq2d 4485 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
87 ovex 7308 . . . . . . 7 (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) ∈ V
8842, 87ifex 4509 . . . . . 6 if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) ∈ V
8986, 36, 88fvmpt 6875 . . . . 5 ((𝑦 · 𝑧) ∈ ℚ → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
9082, 89syl 17 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
91 qcn 12703 . . . . . . . 8 (𝑦 ∈ ℚ → 𝑦 ∈ ℂ)
9280, 91syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℂ)
93 qcn 12703 . . . . . . . 8 (𝑧 ∈ ℚ → 𝑧 ∈ ℂ)
9473, 93syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℂ)
95 simp2r 1199 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ≠ 0)
9692, 94, 95, 74mulne0d 11627 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ≠ 0)
9796neneqd 2948 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ (𝑦 · 𝑧) = 0)
9897iffalsed 4470 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
9990, 98eqtrd 2778 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
100633expb 1119 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
1011003adant3 1131 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
102 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
103 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑧))
104103oveq2d 7291 . . . . . . . 8 (𝑥 = 𝑧 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑧)))
105102, 104ifbieq2d 4485 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
106 ovex 7308 . . . . . . . 8 (𝑁↑(𝑃 pCnt 𝑧)) ∈ V
10742, 106ifex 4509 . . . . . . 7 if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) ∈ V
108105, 36, 107fvmpt 6875 . . . . . 6 (𝑧 ∈ ℚ → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
10973, 108syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
11074neneqd 2948 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ 𝑧 = 0)
111110iffalsed 4470 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) = (𝑁↑(𝑃 pCnt 𝑧)))
112109, 111eqtrd 2778 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = (𝑁↑(𝑃 pCnt 𝑧)))
113101, 112oveq12d 7293 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
11479, 99, 1133eqtr4d 2788 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
115 iftrue 4465 . . . . 5 ((𝑦 + 𝑧) = 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = 0)
116115breq1d 5084 . . . 4 ((𝑦 + 𝑧) = 0 → (if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ↔ 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
117 ifnefalse 4471 . . . . . 6 ((𝑦 + 𝑧) ≠ 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
118117adantl 482 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
11971adantr 481 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
120119zred 12426 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℝ)
12176adantr 481 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℤ)
122121zred 12426 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℝ)
123213ad2ant1 1132 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ)
124123ad2antrr 723 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ∈ ℝ)
12570ad2antrr 723 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ≠ 0)
12672adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑃 ∈ ℙ)
127 qaddcl 12705 . . . . . . . . . . . 12 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 + 𝑧) ∈ ℚ)
12880, 73, 127syl2anc 584 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) ∈ ℚ)
129128adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ∈ ℚ)
130 simpr 485 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ≠ 0)
131 pcqcl 16557 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑦 + 𝑧) ∈ ℚ ∧ (𝑦 + 𝑧) ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
132126, 129, 130, 131syl12anc 834 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
133132adantr 481 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
134124, 125, 133reexpclzd 13964 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
135119adantr 481 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ∈ ℤ)
136124, 125, 135reexpclzd 13964 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
137 simpl1 1190 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)))
138137, 21syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ)
139137, 27syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ≠ 0)
140138, 139, 119reexpclzd 13964 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
141138, 139, 121reexpclzd 13964 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
142140, 141readdcld 11004 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
143142adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
144126adantr 481 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑃 ∈ ℙ)
14580ad2antrr 723 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑦 ∈ ℚ)
14673ad2antrr 723 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑧 ∈ ℚ)
147 simpr 485 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧))
148144, 145, 146, 147pcadd 16590 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
149137, 26syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ+)
15024simprd 496 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 < 1)
151137, 150syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 < 1)
152149, 119, 132, 151ltexp2rd 13963 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
153152notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
154132zred 12426 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℝ)
155120, 154lenltd 11121 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦)))
156138, 139, 132reexpclzd 13964 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
157156, 140lenltd 11121 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
158153, 155, 1573bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦))))
159158biimpa 477 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
160148, 159syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
161263ad2ant1 1132 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ+)
162161, 76rpexpcld 13962 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
163162adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
164163rpge0d 12776 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑧)))
165140, 141addge01d 11563 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
166164, 165mpbid 231 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
167166adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
168134, 136, 143, 160, 167letrd 11132 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
169156adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
170141adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
171142adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
172126adantr 481 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑃 ∈ ℙ)
17373ad2antrr 723 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑧 ∈ ℚ)
17480ad2antrr 723 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑦 ∈ ℚ)
175 simpr 485 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦))
176172, 173, 174, 175pcadd 16590 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑧 + 𝑦)))
17792, 94addcomd 11177 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
178177oveq2d 7291 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
179178ad2antrr 723 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
180176, 179breqtrrd 5102 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
181149, 121, 132, 151ltexp2rd 13963 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
182181notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
183122, 154lenltd 11121 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧)))
184156, 141lenltd 11121 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
185182, 183, 1843bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧))))
186185biimpa 477 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
187180, 186syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
188161, 71rpexpcld 13962 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
189188adantr 481 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
190189rpge0d 12776 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑦)))
191141, 140addge02d 11564 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
192190, 191mpbid 231 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
193192adantr 481 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
194169, 170, 171, 187, 193letrd 11132 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
195120, 122, 168, 194lecasei 11081 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
196118, 195eqbrtrd 5096 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
197188, 162rpaddcld 12787 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ+)
198197rpge0d 12776 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
199116, 196, 198pm2.61ne 3030 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
200 eqeq1 2742 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑥 = 0 ↔ (𝑦 + 𝑧) = 0))
201 oveq2 7283 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 + 𝑧)))
202201oveq2d 7291 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
203200, 202ifbieq2d 4485 . . . . 5 (𝑥 = (𝑦 + 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
204 ovex 7308 . . . . . 6 (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ V
20542, 204ifex 4509 . . . . 5 if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ∈ V
206203, 36, 205fvmpt 6875 . . . 4 ((𝑦 + 𝑧) ∈ ℚ → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
207128, 206syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
208101, 112oveq12d 7293 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) + (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
209199, 207, 2083brtr4d 5106 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
2102, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209isabvd 20080 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cz 12319  cq 12688  +crp 12730  (,)cioo 13079  cexp 13782  cprime 16376   pCnt cpc 16537  Basecbs 16912  s cress 16941  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  Ringcrg 19783  DivRingcdr 19991  AbsValcabv 20076  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-subrg 20022  df-abv 20077  df-cnfld 20598
This theorem is referenced by:  padicabvf  26779  padicabvcxp  26780
  Copyright terms: Public domain W3C validator