MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicabv Structured version   Visualization version   GIF version

Theorem padicabv 27689
Description: The p-adic absolute value (with arbitrary base) is an absolute value. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.f 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
Assertion
Ref Expression
padicabv ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑄   𝑥,𝑃
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem padicabv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qabsabv.a . . 3 𝐴 = (AbsVal‘𝑄)
21a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐴 = (AbsVal‘𝑄))
3 qrng.q . . . 4 𝑄 = (ℂflds ℚ)
43qrngbas 27678 . . 3 ℚ = (Base‘𝑄)
54a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → ℚ = (Base‘𝑄))
6 qex 13001 . . 3 ℚ ∈ V
7 cnfldadd 21388 . . . 4 + = (+g‘ℂfld)
83, 7ressplusg 17336 . . 3 (ℚ ∈ V → + = (+g𝑄))
96, 8mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → + = (+g𝑄))
10 cnfldmul 21390 . . . 4 · = (.r‘ℂfld)
113, 10ressmulr 17353 . . 3 (ℚ ∈ V → · = (.r𝑄))
126, 11mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → · = (.r𝑄))
133qrng0 27680 . . 3 0 = (0g𝑄)
1413a1i 11 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 = (0g𝑄))
153qdrng 27679 . . 3 𝑄 ∈ DivRing
16 drngring 20753 . . 3 (𝑄 ∈ DivRing → 𝑄 ∈ Ring)
1715, 16mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑄 ∈ Ring)
18 0red 11262 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 = 0) → 0 ∈ ℝ)
19 ioossre 13445 . . . . . . 7 (0(,)1) ⊆ ℝ
20 simpr 484 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ (0(,)1))
2119, 20sselid 3993 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ)
2221ad2antrr 726 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ∈ ℝ)
23 eliooord 13443 . . . . . . . . . 10 (𝑁 ∈ (0(,)1) → (0 < 𝑁𝑁 < 1))
2423adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (0 < 𝑁𝑁 < 1))
2524simpld 494 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 0 < 𝑁)
2621, 25elrpd 13072 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℝ+)
2726rpne0d 13080 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ≠ 0)
2827ad2antrr 726 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → 𝑁 ≠ 0)
29 df-ne 2939 . . . . . 6 (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0)
30 pcqcl 16890 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3130adantlr 715 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) ∈ ℤ)
3231anassrs 467 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3329, 32sylan2br 595 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑃 pCnt 𝑥) ∈ ℤ)
3422, 28, 33reexpclzd 14285 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) ∧ ¬ 𝑥 = 0) → (𝑁↑(𝑃 pCnt 𝑥)) ∈ ℝ)
3518, 34ifclda 4566 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑥 ∈ ℚ) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) ∈ ℝ)
36 padic.f . . 3 𝐹 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))))
3735, 36fmptd 7134 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹:ℚ⟶ℝ)
38 0z 12622 . . . 4 0 ∈ ℤ
39 zq 12994 . . . 4 (0 ∈ ℤ → 0 ∈ ℚ)
4038, 39ax-mp 5 . . 3 0 ∈ ℚ
41 iftrue 4537 . . . 4 (𝑥 = 0 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = 0)
42 c0ex 11253 . . . 4 0 ∈ V
4341, 36, 42fvmpt 7016 . . 3 (0 ∈ ℚ → (𝐹‘0) = 0)
4440, 43mp1i 13 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → (𝐹‘0) = 0)
45213ad2ant1 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑁 ∈ ℝ)
46 pcqcl 16890 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
4746adantlr 715 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
48473impb 1114 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
49253ad2ant1 1132 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < 𝑁)
50 expgt0 14133 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑃 pCnt 𝑦) ∈ ℤ ∧ 0 < 𝑁) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
5145, 48, 49, 50syl3anc 1370 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝑁↑(𝑃 pCnt 𝑦)))
52 eqeq1 2739 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0))
53 oveq2 7439 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑦))
5453oveq2d 7447 . . . . . . 7 (𝑥 = 𝑦 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑦)))
5552, 54ifbieq2d 4557 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
56 ovex 7464 . . . . . . 7 (𝑁↑(𝑃 pCnt 𝑦)) ∈ V
5742, 56ifex 4581 . . . . . 6 if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) ∈ V
5855, 36, 57fvmpt 7016 . . . . 5 (𝑦 ∈ ℚ → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
59583ad2ant2 1133 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))))
60 simp3 1137 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 𝑦 ≠ 0)
6160neneqd 2943 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → ¬ 𝑦 = 0)
6261iffalsed 4542 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → if(𝑦 = 0, 0, (𝑁↑(𝑃 pCnt 𝑦))) = (𝑁↑(𝑃 pCnt 𝑦)))
6359, 62eqtrd 2775 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
6451, 63breqtrrd 5176 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) → 0 < (𝐹𝑦))
65 pcqmul 16887 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
66653adant1r 1176 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 · 𝑧)) = ((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧)))
6766oveq2d 7447 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))))
6821recnd 11287 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 ∈ ℂ)
69683ad2ant1 1132 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℂ)
70273ad2ant1 1132 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ≠ 0)
71473adant3 1131 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑦) ∈ ℤ)
72 simp1l 1196 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑃 ∈ ℙ)
73 simp3l 1200 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℚ)
74 simp3r 1201 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ≠ 0)
75 pcqcl 16890 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
7672, 73, 74, 75syl12anc 837 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt 𝑧) ∈ ℤ)
77 expaddz 14144 . . . . 5 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑃 pCnt 𝑦) ∈ ℤ ∧ (𝑃 pCnt 𝑧) ∈ ℤ)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7869, 70, 71, 76, 77syl22anc 839 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑((𝑃 pCnt 𝑦) + (𝑃 pCnt 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
7967, 78eqtrd 2775 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
80 simp2l 1198 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℚ)
81 qmulcl 13007 . . . . . 6 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 · 𝑧) ∈ ℚ)
8280, 73, 81syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ∈ ℚ)
83 eqeq1 2739 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0))
84 oveq2 7439 . . . . . . . 8 (𝑥 = (𝑦 · 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 · 𝑧)))
8584oveq2d 7447 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
8683, 85ifbieq2d 4557 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
87 ovex 7464 . . . . . . 7 (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))) ∈ V
8842, 87ifex 4581 . . . . . 6 if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) ∈ V
8986, 36, 88fvmpt 7016 . . . . 5 ((𝑦 · 𝑧) ∈ ℚ → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
9082, 89syl 17 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))))
91 qcn 13003 . . . . . . . 8 (𝑦 ∈ ℚ → 𝑦 ∈ ℂ)
9280, 91syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ∈ ℂ)
93 qcn 13003 . . . . . . . 8 (𝑧 ∈ ℚ → 𝑧 ∈ ℂ)
9473, 93syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑧 ∈ ℂ)
95 simp2r 1199 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑦 ≠ 0)
9692, 94, 95, 74mulne0d 11913 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 · 𝑧) ≠ 0)
9796neneqd 2943 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ (𝑦 · 𝑧) = 0)
9897iffalsed 4542 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 · 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 · 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
9990, 98eqtrd 2775 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = (𝑁↑(𝑃 pCnt (𝑦 · 𝑧))))
100633expb 1119 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
1011003adant3 1131 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑦) = (𝑁↑(𝑃 pCnt 𝑦)))
102 eqeq1 2739 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0))
103 oveq2 7439 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑃 pCnt 𝑥) = (𝑃 pCnt 𝑧))
104103oveq2d 7447 . . . . . . . 8 (𝑥 = 𝑧 → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt 𝑧)))
105102, 104ifbieq2d 4557 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
106 ovex 7464 . . . . . . . 8 (𝑁↑(𝑃 pCnt 𝑧)) ∈ V
10742, 106ifex 4581 . . . . . . 7 if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) ∈ V
108105, 36, 107fvmpt 7016 . . . . . 6 (𝑧 ∈ ℚ → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
10973, 108syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))))
11074neneqd 2943 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ¬ 𝑧 = 0)
111110iffalsed 4542 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if(𝑧 = 0, 0, (𝑁↑(𝑃 pCnt 𝑧))) = (𝑁↑(𝑃 pCnt 𝑧)))
112109, 111eqtrd 2775 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹𝑧) = (𝑁↑(𝑃 pCnt 𝑧)))
113101, 112oveq12d 7449 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) · (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) · (𝑁↑(𝑃 pCnt 𝑧))))
11479, 99, 1133eqtr4d 2785 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
115 iftrue 4537 . . . . 5 ((𝑦 + 𝑧) = 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = 0)
116115breq1d 5158 . . . 4 ((𝑦 + 𝑧) = 0 → (if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ↔ 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
117 ifnefalse 4543 . . . . . 6 ((𝑦 + 𝑧) ≠ 0 → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
118117adantl 481 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
11971adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℤ)
120119zred 12720 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑦) ∈ ℝ)
12176adantr 480 . . . . . . 7 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℤ)
122121zred 12720 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt 𝑧) ∈ ℝ)
123213ad2ant1 1132 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ)
124123ad2antrr 726 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ∈ ℝ)
12570ad2antrr 726 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑁 ≠ 0)
12672adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑃 ∈ ℙ)
127 qaddcl 13005 . . . . . . . . . . . 12 ((𝑦 ∈ ℚ ∧ 𝑧 ∈ ℚ) → (𝑦 + 𝑧) ∈ ℚ)
12880, 73, 127syl2anc 584 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) ∈ ℚ)
129128adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ∈ ℚ)
130 simpr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑦 + 𝑧) ≠ 0)
131 pcqcl 16890 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ((𝑦 + 𝑧) ∈ ℚ ∧ (𝑦 + 𝑧) ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
132126, 129, 130, 131syl12anc 837 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
133132adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℤ)
134124, 125, 133reexpclzd 14285 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
135119adantr 480 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ∈ ℤ)
136124, 125, 135reexpclzd 14285 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
137 simpl1 1190 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)))
138137, 21syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ)
139137, 27syl 17 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ≠ 0)
140138, 139, 119reexpclzd 14285 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ)
141138, 139, 121reexpclzd 14285 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
142140, 141readdcld 11288 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
143142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
144126adantr 480 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑃 ∈ ℙ)
14580ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑦 ∈ ℚ)
14673ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → 𝑧 ∈ ℚ)
147 simpr 484 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧))
148144, 145, 146, 147pcadd 16923 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
149137, 26syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 ∈ ℝ+)
15024simprd 495 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝑁 < 1)
151137, 150syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 𝑁 < 1)
152149, 119, 132, 151ltexp2rd 14284 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
153152notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
154132zred 12720 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑃 pCnt (𝑦 + 𝑧)) ∈ ℝ)
155120, 154lenltd 11405 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑦)))
156138, 139, 132reexpclzd 14285 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
157156, 140lenltd 11405 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑦)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
158153, 155, 1573bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦))))
159158biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
160148, 159syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑦)))
161263ad2ant1 1132 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 𝑁 ∈ ℝ+)
162161, 76rpexpcld 14283 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
163162adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ+)
164163rpge0d 13079 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑧)))
165140, 141addge01d 11849 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
166164, 165mpbid 232 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
167166adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt 𝑦)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
168134, 136, 143, 160, 167letrd 11416 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑦) ≤ (𝑃 pCnt 𝑧)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
169156adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ ℝ)
170141adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ∈ ℝ)
171142adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ)
172126adantr 480 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑃 ∈ ℙ)
17373ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑧 ∈ ℚ)
17480ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → 𝑦 ∈ ℚ)
175 simpr 484 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦))
176172, 173, 174, 175pcadd 16923 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑧 + 𝑦)))
17792, 94addcomd 11461 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑦 + 𝑧) = (𝑧 + 𝑦))
178177oveq2d 7447 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
179178ad2antrr 726 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt (𝑦 + 𝑧)) = (𝑃 pCnt (𝑧 + 𝑦)))
180176, 179breqtrrd 5176 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)))
181149, 121, 132, 151ltexp2rd 14284 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
182181notbid 318 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
183122, 154lenltd 11405 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ ¬ (𝑃 pCnt (𝑦 + 𝑧)) < (𝑃 pCnt 𝑧)))
184156, 141lenltd 11405 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)) ↔ ¬ (𝑁↑(𝑃 pCnt 𝑧)) < (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
185182, 183, 1843bitr4d 311 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → ((𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧)) ↔ (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧))))
186185biimpa 476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt (𝑦 + 𝑧))) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
187180, 186syldan 591 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ (𝑁↑(𝑃 pCnt 𝑧)))
188161, 71rpexpcld 14283 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
189188adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑦)) ∈ ℝ+)
190189rpge0d 13079 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → 0 ≤ (𝑁↑(𝑃 pCnt 𝑦)))
191141, 140addge02d 11850 . . . . . . . . 9 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (0 ≤ (𝑁↑(𝑃 pCnt 𝑦)) ↔ (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧)))))
192190, 191mpbid 232 . . . . . . . 8 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
193192adantr 480 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt 𝑧)) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
194169, 170, 171, 187, 193letrd 11416 . . . . . 6 (((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) ∧ (𝑃 pCnt 𝑧) ≤ (𝑃 pCnt 𝑦)) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
195120, 122, 168, 194lecasei 11365 . . . . 5 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
196118, 195eqbrtrd 5170 . . . 4 ((((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) ∧ (𝑦 + 𝑧) ≠ 0) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
197188, 162rpaddcld 13090 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))) ∈ ℝ+)
198197rpge0d 13079 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → 0 ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
199116, 196, 198pm2.61ne 3025 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ≤ ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
200 eqeq1 2739 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑥 = 0 ↔ (𝑦 + 𝑧) = 0))
201 oveq2 7439 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝑃 pCnt 𝑥) = (𝑃 pCnt (𝑦 + 𝑧)))
202201oveq2d 7447 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝑁↑(𝑃 pCnt 𝑥)) = (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))))
203200, 202ifbieq2d 4557 . . . . 5 (𝑥 = (𝑦 + 𝑧) → if(𝑥 = 0, 0, (𝑁↑(𝑃 pCnt 𝑥))) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
204 ovex 7464 . . . . . 6 (𝑁↑(𝑃 pCnt (𝑦 + 𝑧))) ∈ V
20542, 204ifex 4581 . . . . 5 if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))) ∈ V
206203, 36, 205fvmpt 7016 . . . 4 ((𝑦 + 𝑧) ∈ ℚ → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
207128, 206syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) = if((𝑦 + 𝑧) = 0, 0, (𝑁↑(𝑃 pCnt (𝑦 + 𝑧)))))
208101, 112oveq12d 7449 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → ((𝐹𝑦) + (𝐹𝑧)) = ((𝑁↑(𝑃 pCnt 𝑦)) + (𝑁↑(𝑃 pCnt 𝑧))))
209199, 207, 2083brtr4d 5180 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) ∧ (𝑦 ∈ ℚ ∧ 𝑦 ≠ 0) ∧ (𝑧 ∈ ℚ ∧ 𝑧 ≠ 0)) → (𝐹‘(𝑦 + 𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
2102, 5, 9, 12, 14, 17, 37, 44, 64, 114, 209isabvd 20830 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (0(,)1)) → 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  ifcif 4531   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cz 12611  cq 12988  +crp 13032  (,)cioo 13384  cexp 14099  cprime 16705   pCnt cpc 16870  Basecbs 17245  s cress 17274  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Ringcrg 20251  DivRingcdr 20746  AbsValcabv 20826  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-abv 20827  df-cnfld 21383
This theorem is referenced by:  padicabvf  27690  padicabvcxp  27691
  Copyright terms: Public domain W3C validator