MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vmacl Structured version   Visualization version   GIF version

Theorem vmacl 25196
Description: Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
vmacl (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ)

Proof of Theorem vmacl
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2866 . 2 ((Λ‘𝐴) = 0 → ((Λ‘𝐴) ∈ ℝ ↔ 0 ∈ ℝ))
2 isppw2 25193 . . . 4 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘)))
3 vmappw 25194 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) = (log‘𝑝))
4 prmnn 15722 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
54nnrpd 12115 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
65relogcld 24710 . . . . . . . 8 (𝑝 ∈ ℙ → (log‘𝑝) ∈ ℝ)
76adantr 473 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℝ)
83, 7eqeltrd 2878 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝𝑘)) ∈ ℝ)
9 fveq2 6411 . . . . . . 7 (𝐴 = (𝑝𝑘) → (Λ‘𝐴) = (Λ‘(𝑝𝑘)))
109eleq1d 2863 . . . . . 6 (𝐴 = (𝑝𝑘) → ((Λ‘𝐴) ∈ ℝ ↔ (Λ‘(𝑝𝑘)) ∈ ℝ))
118, 10syl5ibrcom 239 . . . . 5 ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝐴 = (𝑝𝑘) → (Λ‘𝐴) ∈ ℝ))
1211rexlimivv 3217 . . . 4 (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝𝑘) → (Λ‘𝐴) ∈ ℝ)
132, 12syl6bi 245 . . 3 (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 → (Λ‘𝐴) ∈ ℝ))
1413imp 396 . 2 ((𝐴 ∈ ℕ ∧ (Λ‘𝐴) ≠ 0) → (Λ‘𝐴) ∈ ℝ)
15 0red 10332 . 2 (𝐴 ∈ ℕ → 0 ∈ ℝ)
161, 14, 15pm2.61ne 3056 1 (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2971  wrex 3090  cfv 6101  (class class class)co 6878  cr 10223  0cc0 10224  cn 11312  cexp 13114  cprime 15719  logclog 24642  Λcvma 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ioc 12429  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-bc 13343  df-hash 13371  df-shft 14148  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-limsup 14543  df-clim 14560  df-rlim 14561  df-sum 14758  df-ef 15134  df-sin 15136  df-cos 15137  df-pi 15139  df-dvds 15320  df-gcd 15552  df-prm 15720  df-pc 15875  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-lp 21269  df-perf 21270  df-cn 21360  df-cnp 21361  df-haus 21448  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cncf 23009  df-limc 23971  df-dv 23972  df-log 24644  df-vma 25176
This theorem is referenced by:  vmaf  25197  vmage0  25199  chpf  25201  efchpcl  25203  chpp1  25233  chpwordi  25235  chtlepsi  25283  vmasum  25293  logfac2  25294  chpval2  25295  vmadivsum  25523  vmadivsumb  25524  rplogsumlem2  25526  rpvmasumlem  25528  dchrvmasum2if  25538  dchrvmasumiflem2  25543  rpvmasum2  25553  dchrisum0re  25554  dchrvmasumlem  25564  rplogsum  25568  vmalogdivsum2  25579  vmalogdivsum  25580  2vmadivsumlem  25581  logsqvma  25583  logsqvma2  25584  selberg  25589  selbergb  25590  selberg2lem  25591  selberg2  25592  selberg2b  25593  chpdifbndlem1  25594  selberg3lem1  25598  selberg3lem2  25599  selberg3  25600  selberg4lem1  25601  selberg4  25602  pntrsumo1  25606  selbergr  25609  selberg3r  25610  selberg4r  25611  selberg34r  25612  pntsf  25614  pntsval2  25617  pntrlog2bndlem1  25618  pntpbnd1a  25626
  Copyright terms: Public domain W3C validator