Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vmacl | Structured version Visualization version GIF version |
Description: Closure for the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016.) |
Ref | Expression |
---|---|
vmacl | ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2838 | . 2 ⊢ ((Λ‘𝐴) = 0 → ((Λ‘𝐴) ∈ ℝ ↔ 0 ∈ ℝ)) | |
2 | isppw2 25784 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘))) | |
3 | vmappw 25785 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝↑𝑘)) = (log‘𝑝)) | |
4 | prmnn 16055 | . . . . . . . . . 10 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
5 | 4 | nnrpd 12455 | . . . . . . . . 9 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+) |
6 | 5 | relogcld 25298 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → (log‘𝑝) ∈ ℝ) |
7 | 6 | adantr 485 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (log‘𝑝) ∈ ℝ) |
8 | 3, 7 | eqeltrd 2851 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (Λ‘(𝑝↑𝑘)) ∈ ℝ) |
9 | fveq2 6651 | . . . . . . 7 ⊢ (𝐴 = (𝑝↑𝑘) → (Λ‘𝐴) = (Λ‘(𝑝↑𝑘))) | |
10 | 9 | eleq1d 2835 | . . . . . 6 ⊢ (𝐴 = (𝑝↑𝑘) → ((Λ‘𝐴) ∈ ℝ ↔ (Λ‘(𝑝↑𝑘)) ∈ ℝ)) |
11 | 8, 10 | syl5ibrcom 250 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝐴 = (𝑝↑𝑘) → (Λ‘𝐴) ∈ ℝ)) |
12 | 11 | rexlimivv 3214 | . . . 4 ⊢ (∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 𝐴 = (𝑝↑𝑘) → (Λ‘𝐴) ∈ ℝ) |
13 | 2, 12 | syl6bi 256 | . . 3 ⊢ (𝐴 ∈ ℕ → ((Λ‘𝐴) ≠ 0 → (Λ‘𝐴) ∈ ℝ)) |
14 | 13 | imp 411 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ (Λ‘𝐴) ≠ 0) → (Λ‘𝐴) ∈ ℝ) |
15 | 0red 10667 | . 2 ⊢ (𝐴 ∈ ℕ → 0 ∈ ℝ) | |
16 | 1, 14, 15 | pm2.61ne 3034 | 1 ⊢ (𝐴 ∈ ℕ → (Λ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2949 ∃wrex 3069 ‘cfv 6328 (class class class)co 7143 ℝcr 10559 0cc0 10560 ℕcn 11659 ↑cexp 13464 ℙcprime 16052 logclog 25230 Λcvma 25761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-inf2 9122 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 ax-addf 10639 ax-mulf 10640 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-2o 8106 df-oadd 8109 df-er 8292 df-map 8411 df-pm 8412 df-ixp 8473 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-fi 8893 df-sup 8924 df-inf 8925 df-oi 8992 df-dju 9348 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-div 11321 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-q 12374 df-rp 12416 df-xneg 12533 df-xadd 12534 df-xmul 12535 df-ioo 12768 df-ioc 12769 df-ico 12770 df-icc 12771 df-fz 12925 df-fzo 13068 df-fl 13196 df-mod 13272 df-seq 13404 df-exp 13465 df-fac 13669 df-bc 13698 df-hash 13726 df-shft 14459 df-cj 14491 df-re 14492 df-im 14493 df-sqrt 14627 df-abs 14628 df-limsup 14861 df-clim 14878 df-rlim 14879 df-sum 15076 df-ef 15454 df-sin 15456 df-cos 15457 df-pi 15459 df-dvds 15641 df-gcd 15879 df-prm 16053 df-pc 16214 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-starv 16623 df-sca 16624 df-vsca 16625 df-ip 16626 df-tset 16627 df-ple 16628 df-ds 16630 df-unif 16631 df-hom 16632 df-cco 16633 df-rest 16739 df-topn 16740 df-0g 16758 df-gsum 16759 df-topgen 16760 df-pt 16761 df-prds 16764 df-xrs 16818 df-qtop 16823 df-imas 16824 df-xps 16826 df-mre 16900 df-mrc 16901 df-acs 16903 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-submnd 18008 df-mulg 18277 df-cntz 18499 df-cmn 18960 df-psmet 20143 df-xmet 20144 df-met 20145 df-bl 20146 df-mopn 20147 df-fbas 20148 df-fg 20149 df-cnfld 20152 df-top 21579 df-topon 21596 df-topsp 21618 df-bases 21631 df-cld 21704 df-ntr 21705 df-cls 21706 df-nei 21783 df-lp 21821 df-perf 21822 df-cn 21912 df-cnp 21913 df-haus 22000 df-tx 22247 df-hmeo 22440 df-fil 22531 df-fm 22623 df-flim 22624 df-flf 22625 df-xms 23007 df-ms 23008 df-tms 23009 df-cncf 23564 df-limc 24550 df-dv 24551 df-log 25232 df-vma 25767 |
This theorem is referenced by: vmaf 25788 vmage0 25790 chpf 25792 efchpcl 25794 chpp1 25824 chpwordi 25826 chtlepsi 25874 vmasum 25884 logfac2 25885 chpval2 25886 vmadivsum 26150 vmadivsumb 26151 rplogsumlem2 26153 rpvmasumlem 26155 dchrvmasum2if 26165 dchrvmasumiflem2 26170 rpvmasum2 26180 dchrisum0re 26181 dchrvmasumlem 26191 rplogsum 26195 vmalogdivsum2 26206 vmalogdivsum 26207 2vmadivsumlem 26208 logsqvma 26210 logsqvma2 26211 selberg 26216 selbergb 26217 selberg2lem 26218 selberg2 26219 selberg2b 26220 chpdifbndlem1 26221 selberg3lem1 26225 selberg3lem2 26226 selberg3 26227 selberg4lem1 26228 selberg4 26229 pntrsumo1 26233 selbergr 26236 selberg3r 26237 selberg4r 26238 selberg34r 26239 pntsf 26241 pntsval2 26244 pntrlog2bndlem1 26245 pntpbnd1a 26253 |
Copyright terms: Public domain | W3C validator |