MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssq Structured version   Visualization version   GIF version

Theorem dvdssq 16500
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssq
StepHypRef Expression
1 breq1 5150 . . 3 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
2 sq0i 14153 . . . 4 (𝑀 = 0 → (𝑀↑2) = 0)
32breq1d 5157 . . 3 (𝑀 = 0 → ((𝑀↑2) ∥ (𝑁↑2) ↔ 0 ∥ (𝑁↑2)))
41, 3bibi12d 345 . 2 (𝑀 = 0 → ((𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)) ↔ (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2))))
5 nnabscl 15268 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
6 breq2 5151 . . . . . . 7 (𝑁 = 0 → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ 0))
7 sq0i 14153 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
87breq2d 5159 . . . . . . 7 (𝑁 = 0 → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ 0))
96, 8bibi12d 345 . . . . . 6 (𝑁 = 0 → (((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)) ↔ ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0)))
10 nnabscl 15268 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
11 dvdssqlem 16499 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
1210, 11sylan2 593 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
13 nnz 12575 . . . . . . . . 9 ((abs‘𝑀) ∈ ℕ → (abs‘𝑀) ∈ ℤ)
14 simpl 483 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
15 dvdsabsb 16215 . . . . . . . . 9 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
1613, 14, 15syl2an 596 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
17 nnsqcl 14089 . . . . . . . . . . 11 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℕ)
1817nnzd 12581 . . . . . . . . . 10 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℤ)
19 zsqcl 14090 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
2019adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁↑2) ∈ ℤ)
21 dvdsabsb 16215 . . . . . . . . . 10 ((((abs‘𝑀)↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2218, 20, 21syl2an 596 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
23 zcn 12559 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2423adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
25 abssq 15249 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
2726breq2d 5159 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2827adantl 482 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2922, 28bitr4d 281 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
3012, 16, 293bitr4d 310 . . . . . . 7 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
3130anassrs 468 . . . . . 6 ((((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
32 dvds0 16211 . . . . . . . . 9 ((abs‘𝑀) ∈ ℤ → (abs‘𝑀) ∥ 0)
33 zsqcl 14090 . . . . . . . . . 10 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∈ ℤ)
34 dvds0 16211 . . . . . . . . . 10 (((abs‘𝑀)↑2) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3533, 34syl 17 . . . . . . . . 9 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3632, 352thd 264 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3713, 36syl 17 . . . . . . 7 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3837adantr 481 . . . . . 6 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
399, 31, 38pm2.61ne 3027 . . . . 5 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
405, 39sylan 580 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
41 absdvdsb 16214 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
4241adantlr 713 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
43 zsqcl 14090 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
4443adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀↑2) ∈ ℤ)
45 absdvdsb 16214 . . . . . 6 (((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
4644, 19, 45syl2an 596 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
47 zcn 12559 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
48 abssq 15249 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
4947, 48syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
5049eqcomd 2738 . . . . . . . 8 (𝑀 ∈ ℤ → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
5150adantr 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
5251breq1d 5157 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5352adantr 481 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5446, 53bitrd 278 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5540, 42, 543bitr4d 310 . . 3 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
5655an32s 650 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
57 0dvds 16216 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
58 sqeq0 14081 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
5923, 58syl 17 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
6057, 59bitr4d 281 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ (𝑁↑2) = 0))
61 0dvds 16216 . . . . 5 ((𝑁↑2) ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
6219, 61syl 17 . . . 4 (𝑁 ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
6360, 62bitr4d 281 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
6463adantl 482 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
654, 56, 64pm2.61ne 3027 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  cn 12208  2c2 12263  cz 12554  cexp 14023  abscabs 15177  cdvds 16193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432
This theorem is referenced by:  pythagtriplem19  16762  4sqlem9  16875  4sqlem10  16876  lgsdir  26824  2sqlem8a  26917
  Copyright terms: Public domain W3C validator