MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdssq Structured version   Visualization version   GIF version

Theorem dvdssq 16513
Description: Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dvdssq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))

Proof of Theorem dvdssq
StepHypRef Expression
1 breq1 5105 . . 3 (𝑀 = 0 → (𝑀𝑁 ↔ 0 ∥ 𝑁))
2 sq0i 14134 . . . 4 (𝑀 = 0 → (𝑀↑2) = 0)
32breq1d 5112 . . 3 (𝑀 = 0 → ((𝑀↑2) ∥ (𝑁↑2) ↔ 0 ∥ (𝑁↑2)))
41, 3bibi12d 345 . 2 (𝑀 = 0 → ((𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)) ↔ (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2))))
5 nnabscl 15268 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
6 breq2 5106 . . . . . . 7 (𝑁 = 0 → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ 0))
7 sq0i 14134 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
87breq2d 5114 . . . . . . 7 (𝑁 = 0 → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ 0))
96, 8bibi12d 345 . . . . . 6 (𝑁 = 0 → (((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)) ↔ ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0)))
10 nnabscl 15268 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (abs‘𝑁) ∈ ℕ)
11 dvdssqlem 16512 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (abs‘𝑁) ∈ ℕ) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
1210, 11sylan2 593 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ (abs‘𝑁) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
13 nnz 12526 . . . . . . . . 9 ((abs‘𝑀) ∈ ℕ → (abs‘𝑀) ∈ ℤ)
14 simpl 482 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
15 dvdsabsb 16221 . . . . . . . . 9 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
1613, 14, 15syl2an 596 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
17 nnsqcl 14069 . . . . . . . . . . 11 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℕ)
1817nnzd 12532 . . . . . . . . . 10 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀)↑2) ∈ ℤ)
19 zsqcl 14070 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑁↑2) ∈ ℤ)
2019adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑁↑2) ∈ ℤ)
21 dvdsabsb 16221 . . . . . . . . . 10 ((((abs‘𝑀)↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2218, 20, 21syl2an 596 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
23 zcn 12510 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
2423adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ)
25 abssq 15248 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
2624, 25syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((abs‘𝑁)↑2) = (abs‘(𝑁↑2)))
2726breq2d 5114 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2827adantl 481 . . . . . . . . 9 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2) ↔ ((abs‘𝑀)↑2) ∥ (abs‘(𝑁↑2))))
2922, 28bitr4d 282 . . . . . . . 8 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (((abs‘𝑀)↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ ((abs‘𝑁)↑2)))
3012, 16, 293bitr4d 311 . . . . . . 7 (((abs‘𝑀) ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
3130anassrs 467 . . . . . 6 ((((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
32 dvds0 16217 . . . . . . . . 9 ((abs‘𝑀) ∈ ℤ → (abs‘𝑀) ∥ 0)
33 zsqcl 14070 . . . . . . . . . 10 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∈ ℤ)
34 dvds0 16217 . . . . . . . . . 10 (((abs‘𝑀)↑2) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3533, 34syl 17 . . . . . . . . 9 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀)↑2) ∥ 0)
3632, 352thd 265 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3713, 36syl 17 . . . . . . 7 ((abs‘𝑀) ∈ ℕ → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
3837adantr 480 . . . . . 6 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 0 ↔ ((abs‘𝑀)↑2) ∥ 0))
399, 31, 38pm2.61ne 3010 . . . . 5 (((abs‘𝑀) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
405, 39sylan 580 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
41 absdvdsb 16220 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
4241adantlr 715 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
43 zsqcl 14070 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀↑2) ∈ ℤ)
4443adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀↑2) ∈ ℤ)
45 absdvdsb 16220 . . . . . 6 (((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
4644, 19, 45syl2an 596 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ (abs‘(𝑀↑2)) ∥ (𝑁↑2)))
47 zcn 12510 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
48 abssq 15248 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
4947, 48syl 17 . . . . . . . . 9 (𝑀 ∈ ℤ → ((abs‘𝑀)↑2) = (abs‘(𝑀↑2)))
5049eqcomd 2735 . . . . . . . 8 (𝑀 ∈ ℤ → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
5150adantr 480 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘(𝑀↑2)) = ((abs‘𝑀)↑2))
5251breq1d 5112 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5352adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((abs‘(𝑀↑2)) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5446, 53bitrd 279 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝑀↑2) ∥ (𝑁↑2) ↔ ((abs‘𝑀)↑2) ∥ (𝑁↑2)))
5540, 42, 543bitr4d 311 . . 3 (((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
5655an32s 652 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
57 0dvds 16222 . . . . 5 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
58 sqeq0 14061 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
5923, 58syl 17 . . . . 5 (𝑁 ∈ ℤ → ((𝑁↑2) = 0 ↔ 𝑁 = 0))
6057, 59bitr4d 282 . . . 4 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ (𝑁↑2) = 0))
61 0dvds 16222 . . . . 5 ((𝑁↑2) ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
6219, 61syl 17 . . . 4 (𝑁 ∈ ℤ → (0 ∥ (𝑁↑2) ↔ (𝑁↑2) = 0))
6360, 62bitr4d 282 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
6463adantl 481 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝑁↑2)))
654, 56, 64pm2.61ne 3010 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  cn 12162  2c2 12217  cz 12505  cexp 14002  abscabs 15176  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441
This theorem is referenced by:  pythagtriplem19  16780  4sqlem9  16893  4sqlem10  16894  lgsdir  27276  2sqlem8a  27369
  Copyright terms: Public domain W3C validator