Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap10 | Structured version Visualization version GIF version |
Description: Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmap10.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap10.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap10.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap10.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap10.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap10.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap10.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap10.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap10.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap10.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmap10 | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → {𝑇} = {(0g‘𝑈)}) | |
2 | 1 | fveq2d 6760 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → (𝑁‘{𝑇}) = (𝑁‘{(0g‘𝑈)})) |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑀‘(𝑁‘{𝑇})) = (𝑀‘(𝑁‘{(0g‘𝑈)}))) |
4 | fveq2 6756 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
5 | 4 | sneqd 4570 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → {(𝑆‘𝑇)} = {(𝑆‘(0g‘𝑈))}) |
6 | 5 | fveq2d 6760 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐿‘{(𝑆‘𝑇)}) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
7 | 3, 6 | eqeq12d 2754 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ↔ (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))}))) |
8 | hdmap10.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | hdmap10.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | hdmap10.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
11 | hdmap10.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
12 | hdmap10.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
13 | hdmap10.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
14 | hdmap10.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
15 | hdmap10.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
16 | hdmap10.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
18 | eqid 2738 | . . 3 ⊢ 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
19 | eqid 2738 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
20 | eqid 2738 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
21 | eqid 2738 | . . 3 ⊢ ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | |
22 | eqid 2738 | . . 3 ⊢ ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) | |
23 | hdmap10.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
24 | 23 | anim1i 614 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) |
25 | eldifsn 4717 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
26 | 24, 25 | sylibr 233 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
27 | 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 26 | hdmap10lem 39780 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
28 | 8, 9, 16 | dvhlmod 39051 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
29 | 19, 11 | lspsn0 20185 | . . . . 5 ⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
31 | 30 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝑀‘{(0g‘𝑈)})) |
32 | eqid 2738 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
33 | 8, 14, 9, 19, 12, 32, 16 | mapd0 39606 | . . 3 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
34 | 8, 9, 19, 12, 32, 15, 16 | hdmapval0 39774 | . . . . . 6 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
35 | 34 | sneqd 4570 | . . . . 5 ⊢ (𝜑 → {(𝑆‘(0g‘𝑈))} = {(0g‘𝐶)}) |
36 | 35 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (𝐿‘{(𝑆‘(0g‘𝑈))}) = (𝐿‘{(0g‘𝐶)})) |
37 | 8, 12, 16 | lcdlmod 39533 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
38 | 32, 13 | lspsn0 20185 | . . . . 5 ⊢ (𝐶 ∈ LMod → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
40 | 36, 39 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → {(0g‘𝐶)} = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
41 | 31, 33, 40 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
42 | 7, 27, 41 | pm2.61ne 3029 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 〈cop 4564 I cid 5479 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LModclmod 20038 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 HVMapchvm 39697 HDMap1chdma1 39732 HDMapchdma 39733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hvmap 39698 df-hdmap1 39734 df-hdmap 39735 |
This theorem is referenced by: hdmapeq0 39785 hdmaprnlem1N 39790 hdmaprnlem3uN 39792 hdmaprnlem6N 39795 hdmaprnlem8N 39797 hdmaprnlem3eN 39799 hdmap14lem1a 39807 hdmap14lem9 39817 hgmaprnlem2N 39838 hdmaplkr 39854 |
Copyright terms: Public domain | W3C validator |