![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap10 | Structured version Visualization version GIF version |
Description: Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmap10.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap10.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap10.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap10.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap10.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap10.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap10.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap10.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap10.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap10.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmap10 | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → {𝑇} = {(0g‘𝑈)}) | |
2 | 1 | fveq2d 6924 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → (𝑁‘{𝑇}) = (𝑁‘{(0g‘𝑈)})) |
3 | 2 | fveq2d 6924 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑀‘(𝑁‘{𝑇})) = (𝑀‘(𝑁‘{(0g‘𝑈)}))) |
4 | fveq2 6920 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
5 | 4 | sneqd 4660 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → {(𝑆‘𝑇)} = {(𝑆‘(0g‘𝑈))}) |
6 | 5 | fveq2d 6924 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐿‘{(𝑆‘𝑇)}) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
7 | 3, 6 | eqeq12d 2756 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ↔ (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))}))) |
8 | hdmap10.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | hdmap10.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | hdmap10.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
11 | hdmap10.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
12 | hdmap10.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
13 | hdmap10.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
14 | hdmap10.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
15 | hdmap10.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
16 | hdmap10.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
18 | eqid 2740 | . . 3 ⊢ 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
19 | eqid 2740 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
20 | eqid 2740 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
21 | eqid 2740 | . . 3 ⊢ ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | |
22 | eqid 2740 | . . 3 ⊢ ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) | |
23 | hdmap10.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
24 | 23 | anim1i 614 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) |
25 | eldifsn 4811 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
26 | 24, 25 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
27 | 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 26 | hdmap10lem 41796 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
28 | 8, 9, 16 | dvhlmod 41067 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
29 | 19, 11 | lspsn0 21029 | . . . . 5 ⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
31 | 30 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝑀‘{(0g‘𝑈)})) |
32 | eqid 2740 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
33 | 8, 14, 9, 19, 12, 32, 16 | mapd0 41622 | . . 3 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
34 | 8, 9, 19, 12, 32, 15, 16 | hdmapval0 41790 | . . . . . 6 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
35 | 34 | sneqd 4660 | . . . . 5 ⊢ (𝜑 → {(𝑆‘(0g‘𝑈))} = {(0g‘𝐶)}) |
36 | 35 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → (𝐿‘{(𝑆‘(0g‘𝑈))}) = (𝐿‘{(0g‘𝐶)})) |
37 | 8, 12, 16 | lcdlmod 41549 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
38 | 32, 13 | lspsn0 21029 | . . . . 5 ⊢ (𝐶 ∈ LMod → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
40 | 36, 39 | eqtr2d 2781 | . . 3 ⊢ (𝜑 → {(0g‘𝐶)} = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
41 | 31, 33, 40 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
42 | 7, 27, 41 | pm2.61ne 3033 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 〈cop 4654 I cid 5592 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LModclmod 20880 LSpanclspn 20992 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 DVecHcdvh 41035 LCDualclcd 41543 mapdcmpd 41581 HVMapchvm 41713 HDMap1chdma1 41748 HDMapchdma 41749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 df-hvmap 41714 df-hdmap1 41750 df-hdmap 41751 |
This theorem is referenced by: hdmapeq0 41801 hdmaprnlem1N 41806 hdmaprnlem3uN 41808 hdmaprnlem6N 41811 hdmaprnlem8N 41813 hdmaprnlem3eN 41815 hdmap14lem1a 41823 hdmap14lem9 41833 hgmaprnlem2N 41854 hdmaplkr 41870 |
Copyright terms: Public domain | W3C validator |