![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap10 | Structured version Visualization version GIF version |
Description: Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmap10.h | β’ π» = (LHypβπΎ) |
hdmap10.u | β’ π = ((DVecHβπΎ)βπ) |
hdmap10.v | β’ π = (Baseβπ) |
hdmap10.n | β’ π = (LSpanβπ) |
hdmap10.c | β’ πΆ = ((LCDualβπΎ)βπ) |
hdmap10.l | β’ πΏ = (LSpanβπΆ) |
hdmap10.m | β’ π = ((mapdβπΎ)βπ) |
hdmap10.s | β’ π = ((HDMapβπΎ)βπ) |
hdmap10.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmap10.t | β’ (π β π β π) |
Ref | Expression |
---|---|
hdmap10 | β’ (π β (πβ(πβ{π})) = (πΏβ{(πβπ)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4630 | . . . . 5 β’ (π = (0gβπ) β {π} = {(0gβπ)}) | |
2 | 1 | fveq2d 6885 | . . . 4 β’ (π = (0gβπ) β (πβ{π}) = (πβ{(0gβπ)})) |
3 | 2 | fveq2d 6885 | . . 3 β’ (π = (0gβπ) β (πβ(πβ{π})) = (πβ(πβ{(0gβπ)}))) |
4 | fveq2 6881 | . . . . 5 β’ (π = (0gβπ) β (πβπ) = (πβ(0gβπ))) | |
5 | 4 | sneqd 4632 | . . . 4 β’ (π = (0gβπ) β {(πβπ)} = {(πβ(0gβπ))}) |
6 | 5 | fveq2d 6885 | . . 3 β’ (π = (0gβπ) β (πΏβ{(πβπ)}) = (πΏβ{(πβ(0gβπ))})) |
7 | 3, 6 | eqeq12d 2740 | . 2 β’ (π = (0gβπ) β ((πβ(πβ{π})) = (πΏβ{(πβπ)}) β (πβ(πβ{(0gβπ)})) = (πΏβ{(πβ(0gβπ))}))) |
8 | hdmap10.h | . . 3 β’ π» = (LHypβπΎ) | |
9 | hdmap10.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
10 | hdmap10.v | . . 3 β’ π = (Baseβπ) | |
11 | hdmap10.n | . . 3 β’ π = (LSpanβπ) | |
12 | hdmap10.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
13 | hdmap10.l | . . 3 β’ πΏ = (LSpanβπΆ) | |
14 | hdmap10.m | . . 3 β’ π = ((mapdβπΎ)βπ) | |
15 | hdmap10.s | . . 3 β’ π = ((HDMapβπΎ)βπ) | |
16 | hdmap10.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
17 | 16 | adantr 480 | . . 3 β’ ((π β§ π β (0gβπ)) β (πΎ β HL β§ π β π»)) |
18 | eqid 2724 | . . 3 β’ β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© | |
19 | eqid 2724 | . . 3 β’ (0gβπ) = (0gβπ) | |
20 | eqid 2724 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
21 | eqid 2724 | . . 3 β’ ((HVMapβπΎ)βπ) = ((HVMapβπΎ)βπ) | |
22 | eqid 2724 | . . 3 β’ ((HDMap1βπΎ)βπ) = ((HDMap1βπΎ)βπ) | |
23 | hdmap10.t | . . . . 5 β’ (π β π β π) | |
24 | 23 | anim1i 614 | . . . 4 β’ ((π β§ π β (0gβπ)) β (π β π β§ π β (0gβπ))) |
25 | eldifsn 4782 | . . . 4 β’ (π β (π β {(0gβπ)}) β (π β π β§ π β (0gβπ))) | |
26 | 24, 25 | sylibr 233 | . . 3 β’ ((π β§ π β (0gβπ)) β π β (π β {(0gβπ)})) |
27 | 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 26 | hdmap10lem 41166 | . 2 β’ ((π β§ π β (0gβπ)) β (πβ(πβ{π})) = (πΏβ{(πβπ)})) |
28 | 8, 9, 16 | dvhlmod 40437 | . . . . 5 β’ (π β π β LMod) |
29 | 19, 11 | lspsn0 20840 | . . . . 5 β’ (π β LMod β (πβ{(0gβπ)}) = {(0gβπ)}) |
30 | 28, 29 | syl 17 | . . . 4 β’ (π β (πβ{(0gβπ)}) = {(0gβπ)}) |
31 | 30 | fveq2d 6885 | . . 3 β’ (π β (πβ(πβ{(0gβπ)})) = (πβ{(0gβπ)})) |
32 | eqid 2724 | . . . 4 β’ (0gβπΆ) = (0gβπΆ) | |
33 | 8, 14, 9, 19, 12, 32, 16 | mapd0 40992 | . . 3 β’ (π β (πβ{(0gβπ)}) = {(0gβπΆ)}) |
34 | 8, 9, 19, 12, 32, 15, 16 | hdmapval0 41160 | . . . . . 6 β’ (π β (πβ(0gβπ)) = (0gβπΆ)) |
35 | 34 | sneqd 4632 | . . . . 5 β’ (π β {(πβ(0gβπ))} = {(0gβπΆ)}) |
36 | 35 | fveq2d 6885 | . . . 4 β’ (π β (πΏβ{(πβ(0gβπ))}) = (πΏβ{(0gβπΆ)})) |
37 | 8, 12, 16 | lcdlmod 40919 | . . . . 5 β’ (π β πΆ β LMod) |
38 | 32, 13 | lspsn0 20840 | . . . . 5 β’ (πΆ β LMod β (πΏβ{(0gβπΆ)}) = {(0gβπΆ)}) |
39 | 37, 38 | syl 17 | . . . 4 β’ (π β (πΏβ{(0gβπΆ)}) = {(0gβπΆ)}) |
40 | 36, 39 | eqtr2d 2765 | . . 3 β’ (π β {(0gβπΆ)} = (πΏβ{(πβ(0gβπ))})) |
41 | 31, 33, 40 | 3eqtrd 2768 | . 2 β’ (π β (πβ(πβ{(0gβπ)})) = (πΏβ{(πβ(0gβπ))})) |
42 | 7, 27, 41 | pm2.61ne 3019 | 1 β’ (π β (πβ(πβ{π})) = (πΏβ{(πβπ)})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2932 β cdif 3937 {csn 4620 β¨cop 4626 I cid 5563 βΎ cres 5668 βcfv 6533 Basecbs 17140 0gc0g 17381 LModclmod 20691 LSpanclspn 20803 HLchlt 38676 LHypclh 39311 LTrncltrn 39428 DVecHcdvh 40405 LCDualclcd 40913 mapdcmpd 40951 HVMapchvm 41083 HDMap1chdma1 41118 HDMapchdma 41119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19035 df-cntz 19218 df-oppg 19247 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-oppr 20221 df-dvdsr 20244 df-unit 20245 df-invr 20275 df-dvr 20288 df-drng 20574 df-lmod 20693 df-lss 20764 df-lsp 20804 df-lvec 20936 df-lsatoms 38302 df-lshyp 38303 df-lcv 38345 df-lfl 38384 df-lkr 38412 df-ldual 38450 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 df-lcdual 40914 df-mapd 40952 df-hvmap 41084 df-hdmap1 41120 df-hdmap 41121 |
This theorem is referenced by: hdmapeq0 41171 hdmaprnlem1N 41176 hdmaprnlem3uN 41178 hdmaprnlem6N 41181 hdmaprnlem8N 41183 hdmaprnlem3eN 41185 hdmap14lem1a 41193 hdmap14lem9 41203 hgmaprnlem2N 41224 hdmaplkr 41240 |
Copyright terms: Public domain | W3C validator |