| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap10 | Structured version Visualization version GIF version | ||
| Description: Part 10 in [Baer] p. 48 line 33, (Ft)* = G(tS) in their notation (S = sigma). (Contributed by NM, 17-May-2015.) |
| Ref | Expression |
|---|---|
| hdmap10.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap10.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap10.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap10.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap10.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap10.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap10.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap10.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap10.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap10.t | ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmap10 | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4609 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → {𝑇} = {(0g‘𝑈)}) | |
| 2 | 1 | fveq2d 6877 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → (𝑁‘{𝑇}) = (𝑁‘{(0g‘𝑈)})) |
| 3 | 2 | fveq2d 6877 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝑀‘(𝑁‘{𝑇})) = (𝑀‘(𝑁‘{(0g‘𝑈)}))) |
| 4 | fveq2 6873 | . . . . 5 ⊢ (𝑇 = (0g‘𝑈) → (𝑆‘𝑇) = (𝑆‘(0g‘𝑈))) | |
| 5 | 4 | sneqd 4611 | . . . 4 ⊢ (𝑇 = (0g‘𝑈) → {(𝑆‘𝑇)} = {(𝑆‘(0g‘𝑈))}) |
| 6 | 5 | fveq2d 6877 | . . 3 ⊢ (𝑇 = (0g‘𝑈) → (𝐿‘{(𝑆‘𝑇)}) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
| 7 | 3, 6 | eqeq12d 2750 | . 2 ⊢ (𝑇 = (0g‘𝑈) → ((𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)}) ↔ (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))}))) |
| 8 | hdmap10.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | hdmap10.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | hdmap10.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 11 | hdmap10.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 12 | hdmap10.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 13 | hdmap10.l | . . 3 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 14 | hdmap10.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 15 | hdmap10.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 16 | hdmap10.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 18 | eqid 2734 | . . 3 ⊢ 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 19 | eqid 2734 | . . 3 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 20 | eqid 2734 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 21 | eqid 2734 | . . 3 ⊢ ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊) | |
| 22 | eqid 2734 | . . 3 ⊢ ((HDMap1‘𝐾)‘𝑊) = ((HDMap1‘𝐾)‘𝑊) | |
| 23 | hdmap10.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑉) | |
| 24 | 23 | anim1i 615 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) |
| 25 | eldifsn 4760 | . . . 4 ⊢ (𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)}) ↔ (𝑇 ∈ 𝑉 ∧ 𝑇 ≠ (0g‘𝑈))) | |
| 26 | 24, 25 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → 𝑇 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 27 | 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 26 | hdmap10lem 41787 | . 2 ⊢ ((𝜑 ∧ 𝑇 ≠ (0g‘𝑈)) → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
| 28 | 8, 9, 16 | dvhlmod 41058 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 29 | 19, 11 | lspsn0 20952 | . . . . 5 ⊢ (𝑈 ∈ LMod → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
| 30 | 28, 29 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁‘{(0g‘𝑈)}) = {(0g‘𝑈)}) |
| 31 | 30 | fveq2d 6877 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝑀‘{(0g‘𝑈)})) |
| 32 | eqid 2734 | . . . 4 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 33 | 8, 14, 9, 19, 12, 32, 16 | mapd0 41613 | . . 3 ⊢ (𝜑 → (𝑀‘{(0g‘𝑈)}) = {(0g‘𝐶)}) |
| 34 | 8, 9, 19, 12, 32, 15, 16 | hdmapval0 41781 | . . . . . 6 ⊢ (𝜑 → (𝑆‘(0g‘𝑈)) = (0g‘𝐶)) |
| 35 | 34 | sneqd 4611 | . . . . 5 ⊢ (𝜑 → {(𝑆‘(0g‘𝑈))} = {(0g‘𝐶)}) |
| 36 | 35 | fveq2d 6877 | . . . 4 ⊢ (𝜑 → (𝐿‘{(𝑆‘(0g‘𝑈))}) = (𝐿‘{(0g‘𝐶)})) |
| 37 | 8, 12, 16 | lcdlmod 41540 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 38 | 32, 13 | lspsn0 20952 | . . . . 5 ⊢ (𝐶 ∈ LMod → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
| 39 | 37, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐿‘{(0g‘𝐶)}) = {(0g‘𝐶)}) |
| 40 | 36, 39 | eqtr2d 2770 | . . 3 ⊢ (𝜑 → {(0g‘𝐶)} = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
| 41 | 31, 33, 40 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(0g‘𝑈)})) = (𝐿‘{(𝑆‘(0g‘𝑈))})) |
| 42 | 7, 27, 41 | pm2.61ne 3016 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑇})) = (𝐿‘{(𝑆‘𝑇)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3921 {csn 4599 〈cop 4605 I cid 5545 ↾ cres 5654 ‘cfv 6528 Basecbs 17215 0gc0g 17440 LModclmod 20804 LSpanclspn 20915 HLchlt 39297 LHypclh 39932 LTrncltrn 40049 DVecHcdvh 41026 LCDualclcd 41534 mapdcmpd 41572 HVMapchvm 41704 HDMap1chdma1 41739 HDMapchdma 41740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-riotaBAD 38900 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-undef 8267 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-0g 17442 df-mre 17585 df-mrc 17586 df-acs 17588 df-proset 18293 df-poset 18312 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-p1 18423 df-lat 18429 df-clat 18496 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19093 df-cntz 19287 df-oppg 19316 df-lsm 19604 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-invr 20335 df-dvr 20348 df-nzr 20460 df-rlreg 20641 df-domn 20642 df-drng 20678 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lvec 21048 df-lsatoms 38923 df-lshyp 38924 df-lcv 38966 df-lfl 39005 df-lkr 39033 df-ldual 39071 df-oposet 39123 df-ol 39125 df-oml 39126 df-covers 39213 df-ats 39214 df-atl 39245 df-cvlat 39269 df-hlat 39298 df-llines 39446 df-lplanes 39447 df-lvols 39448 df-lines 39449 df-psubsp 39451 df-pmap 39452 df-padd 39744 df-lhyp 39936 df-laut 39937 df-ldil 40052 df-ltrn 40053 df-trl 40107 df-tgrp 40691 df-tendo 40703 df-edring 40705 df-dveca 40951 df-disoa 40977 df-dvech 41027 df-dib 41087 df-dic 41121 df-dih 41177 df-doch 41296 df-djh 41343 df-lcdual 41535 df-mapd 41573 df-hvmap 41705 df-hdmap1 41741 df-hdmap 41742 |
| This theorem is referenced by: hdmapeq0 41792 hdmaprnlem1N 41797 hdmaprnlem3uN 41799 hdmaprnlem6N 41802 hdmaprnlem8N 41804 hdmaprnlem3eN 41806 hdmap14lem1a 41814 hdmap14lem9 41824 hgmaprnlem2N 41845 hdmaplkr 41861 |
| Copyright terms: Public domain | W3C validator |