| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subaddrii | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
| subadd.3 | ⊢ 𝐶 ∈ ℂ |
| subaddri.4 | ⊢ (𝐵 + 𝐶) = 𝐴 |
| Ref | Expression |
|---|---|
| subaddrii | ⊢ (𝐴 − 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddri.4 | . 2 ⊢ (𝐵 + 𝐶) = 𝐴 | |
| 2 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | pncan3i.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | subadd.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 5 | 2, 3, 4 | subaddi 11509 | . 2 ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: 2m1e1 12307 1mhlfehlf 12401 halfthird 12403 5recm6rec 12792 4bc2eq6 14294 bpoly3 16024 bpoly4 16025 cos1bnd 16155 cos2bnd 16156 pythagtriplem1 16787 cosq14gt0 26419 cosq14ge0 26420 sincos6thpi 26425 pige3ALT 26429 cosne0 26438 resinf1o 26445 logimul 26523 mcubic 26757 quartlem1 26767 acosneg 26797 acosbnd 26810 atanlogsublem 26825 chtub 27123 lgsdir2lem1 27236 addsqnreup 27354 addltmulALT 32375 ply1dg3rt0irred 33551 fib5 34396 fib6 34397 hgt750lem 34642 problem3 35654 problem4 35655 imsqrtvalex 43635 lhe4.4ex1a 44318 stoweidlem13 46011 stoweidlem26 46024 wallispilem4 46066 41prothprmlem2 47619 linevalexample 48384 5m4e1 49786 |
| Copyright terms: Public domain | W3C validator |