MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subaddrii Structured version   Visualization version   GIF version

Theorem subaddrii 11572
Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.)
Hypotheses
Ref Expression
negidi.1 𝐴 ∈ ℂ
pncan3i.2 𝐵 ∈ ℂ
subadd.3 𝐶 ∈ ℂ
subaddri.4 (𝐵 + 𝐶) = 𝐴
Assertion
Ref Expression
subaddrii (𝐴𝐵) = 𝐶

Proof of Theorem subaddrii
StepHypRef Expression
1 subaddri.4 . 2 (𝐵 + 𝐶) = 𝐴
2 negidi.1 . . 3 𝐴 ∈ ℂ
3 pncan3i.2 . . 3 𝐵 ∈ ℂ
4 subadd.3 . . 3 𝐶 ∈ ℂ
52, 3, 4subaddi 11570 . 2 ((𝐴𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)
61, 5mpbir 231 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7405  cc 11127   + caddc 11132  cmin 11466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468
This theorem is referenced by:  2m1e1  12366  1mhlfehlf  12460  halfthird  12462  5recm6rec  12851  4bc2eq6  14347  bpoly3  16074  bpoly4  16075  cos1bnd  16205  cos2bnd  16206  pythagtriplem1  16836  cosq14gt0  26471  cosq14ge0  26472  sincos6thpi  26477  pige3ALT  26481  cosne0  26490  resinf1o  26497  logimul  26575  mcubic  26809  quartlem1  26819  acosneg  26849  acosbnd  26862  atanlogsublem  26877  chtub  27175  lgsdir2lem1  27288  addsqnreup  27406  addltmulALT  32427  ply1dg3rt0irred  33595  fib5  34437  fib6  34438  hgt750lem  34683  problem3  35689  problem4  35690  imsqrtvalex  43670  lhe4.4ex1a  44353  stoweidlem13  46042  stoweidlem26  46055  wallispilem4  46097  41prothprmlem2  47632  linevalexample  48371  5m4e1  49661
  Copyright terms: Public domain W3C validator