| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subaddrii | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
| subadd.3 | ⊢ 𝐶 ∈ ℂ |
| subaddri.4 | ⊢ (𝐵 + 𝐶) = 𝐴 |
| Ref | Expression |
|---|---|
| subaddrii | ⊢ (𝐴 − 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddri.4 | . 2 ⊢ (𝐵 + 𝐶) = 𝐴 | |
| 2 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | pncan3i.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | subadd.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 5 | 2, 3, 4 | subaddi 11570 | . 2 ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 − cmin 11466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 |
| This theorem is referenced by: 2m1e1 12366 1mhlfehlf 12460 halfthird 12462 5recm6rec 12851 4bc2eq6 14347 bpoly3 16074 bpoly4 16075 cos1bnd 16205 cos2bnd 16206 pythagtriplem1 16836 cosq14gt0 26471 cosq14ge0 26472 sincos6thpi 26477 pige3ALT 26481 cosne0 26490 resinf1o 26497 logimul 26575 mcubic 26809 quartlem1 26819 acosneg 26849 acosbnd 26862 atanlogsublem 26877 chtub 27175 lgsdir2lem1 27288 addsqnreup 27406 addltmulALT 32427 ply1dg3rt0irred 33595 fib5 34437 fib6 34438 hgt750lem 34683 problem3 35689 problem4 35690 imsqrtvalex 43670 lhe4.4ex1a 44353 stoweidlem13 46042 stoweidlem26 46055 wallispilem4 46097 41prothprmlem2 47632 linevalexample 48371 5m4e1 49661 |
| Copyright terms: Public domain | W3C validator |