| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subaddrii | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
| subadd.3 | ⊢ 𝐶 ∈ ℂ |
| subaddri.4 | ⊢ (𝐵 + 𝐶) = 𝐴 |
| Ref | Expression |
|---|---|
| subaddrii | ⊢ (𝐴 − 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddri.4 | . 2 ⊢ (𝐵 + 𝐶) = 𝐴 | |
| 2 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | pncan3i.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | subadd.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 5 | 2, 3, 4 | subaddi 11459 | . 2 ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 + caddc 11020 − cmin 11355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 |
| This theorem is referenced by: 2m1e1 12257 1mhlfehlf 12351 halfthird 12353 5recm6rec 12741 4bc2eq6 14243 bpoly3 15972 bpoly4 15973 cos1bnd 16103 cos2bnd 16104 pythagtriplem1 16735 cosq14gt0 26466 cosq14ge0 26467 sincos6thpi 26472 pige3ALT 26476 cosne0 26485 resinf1o 26492 logimul 26570 mcubic 26804 quartlem1 26814 acosneg 26844 acosbnd 26857 atanlogsublem 26872 chtub 27170 lgsdir2lem1 27283 addsqnreup 27401 addltmulALT 32447 ply1dg3rt0irred 33593 fib5 34490 fib6 34491 hgt750lem 34736 problem3 35783 problem4 35784 imsqrtvalex 43803 lhe4.4ex1a 44486 stoweidlem13 46173 stoweidlem26 46186 wallispilem4 46228 41prothprmlem2 47780 linevalexample 48557 5m4e1 49958 |
| Copyright terms: Public domain | W3C validator |