| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subaddrii | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| negidi.1 | ⊢ 𝐴 ∈ ℂ |
| pncan3i.2 | ⊢ 𝐵 ∈ ℂ |
| subadd.3 | ⊢ 𝐶 ∈ ℂ |
| subaddri.4 | ⊢ (𝐵 + 𝐶) = 𝐴 |
| Ref | Expression |
|---|---|
| subaddrii | ⊢ (𝐴 − 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subaddri.4 | . 2 ⊢ (𝐵 + 𝐶) = 𝐴 | |
| 2 | negidi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | pncan3i.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 4 | subadd.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 5 | 2, 3, 4 | subaddi 11443 | . 2 ⊢ ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) |
| 6 | 1, 5 | mpbir 231 | 1 ⊢ (𝐴 − 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 + caddc 11004 − cmin 11339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 |
| This theorem is referenced by: 2m1e1 12241 1mhlfehlf 12335 halfthird 12337 5recm6rec 12726 4bc2eq6 14231 bpoly3 15960 bpoly4 15961 cos1bnd 16091 cos2bnd 16092 pythagtriplem1 16723 cosq14gt0 26441 cosq14ge0 26442 sincos6thpi 26447 pige3ALT 26451 cosne0 26460 resinf1o 26467 logimul 26545 mcubic 26779 quartlem1 26789 acosneg 26819 acosbnd 26832 atanlogsublem 26847 chtub 27145 lgsdir2lem1 27258 addsqnreup 27376 addltmulALT 32418 ply1dg3rt0irred 33538 fib5 34410 fib6 34411 hgt750lem 34656 problem3 35703 problem4 35704 imsqrtvalex 43679 lhe4.4ex1a 44362 stoweidlem13 46051 stoweidlem26 46064 wallispilem4 46106 41prothprmlem2 47649 linevalexample 48427 5m4e1 49829 |
| Copyright terms: Public domain | W3C validator |