| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcomi | Structured version Visualization version GIF version | ||
| Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcomi | ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcom 11429 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 |
| This theorem is referenced by: addcomli 11435 comraddi 11458 fztpval 13608 fzo1to4tp 13775 ef01bndlem 16203 modxai 17089 pcoass 24994 tangtx 26484 eff1o 26528 log2ublem2 26927 basellem9 27069 ppiub 27185 bposlem8 27272 lgsdir2lem2 27307 lgsdir2lem3 27308 lgsdir2lem5 27310 ax5seglem7 28881 ipasslem10 30787 normlem2 31059 normlem3 31060 norm-ii-i 31085 normpar2i 31104 dpmul4 32841 hgt750lem2 34642 problem3 35647 problem5 35649 quad3 35650 mblfinlem3 37641 fdc 37727 addcomnni 41961 gcdaddmzz2nncomi 41971 aks4d1p1p4 42047 2xp3dxp2ge1d 42217 decaddcom 42298 sqdeccom12 42303 stoweidlem13 46000 fourierdlem24 46118 3exp4mod41 47576 |
| Copyright terms: Public domain | W3C validator |