Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recrecnq | Structured version Visualization version GIF version |
Description: Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recrecnq | ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6824 | . . 3 ⊢ (𝑥 = 𝐴 → (*Q‘(*Q‘𝑥)) = (*Q‘(*Q‘𝐴))) | |
2 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
3 | 1, 2 | eqeq12d 2752 | . 2 ⊢ (𝑥 = 𝐴 → ((*Q‘(*Q‘𝑥)) = 𝑥 ↔ (*Q‘(*Q‘𝐴)) = 𝐴)) |
4 | mulcomnq 10802 | . . . 4 ⊢ ((*Q‘𝑥) ·Q 𝑥) = (𝑥 ·Q (*Q‘𝑥)) | |
5 | recidnq 10814 | . . . 4 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
6 | 4, 5 | eqtrid 2788 | . . 3 ⊢ (𝑥 ∈ Q → ((*Q‘𝑥) ·Q 𝑥) = 1Q) |
7 | recclnq 10815 | . . . 4 ⊢ (𝑥 ∈ Q → (*Q‘𝑥) ∈ Q) | |
8 | recmulnq 10813 | . . . 4 ⊢ ((*Q‘𝑥) ∈ Q → ((*Q‘(*Q‘𝑥)) = 𝑥 ↔ ((*Q‘𝑥) ·Q 𝑥) = 1Q)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑥 ∈ Q → ((*Q‘(*Q‘𝑥)) = 𝑥 ↔ ((*Q‘𝑥) ·Q 𝑥) = 1Q)) |
10 | 6, 9 | mpbird 256 | . 2 ⊢ (𝑥 ∈ Q → (*Q‘(*Q‘𝑥)) = 𝑥) |
11 | 3, 10 | vtoclga 3522 | 1 ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Qcnq 10701 1Qc1q 10702 ·Q cmq 10705 *Qcrq 10706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-oadd 8363 df-omul 8364 df-er 8561 df-ni 10721 df-mi 10723 df-lti 10724 df-mpq 10758 df-enq 10760 df-nq 10761 df-erq 10762 df-mq 10764 df-1nq 10765 df-rq 10766 |
This theorem is referenced by: reclem2pr 10897 |
Copyright terms: Public domain | W3C validator |