Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recidnq | Structured version Visualization version GIF version |
Description: A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
recidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ (*Q‘𝐴) = (*Q‘𝐴) | |
2 | recmulnq 10830 | . 2 ⊢ (𝐴 ∈ Q → ((*Q‘𝐴) = (*Q‘𝐴) ↔ (𝐴 ·Q (*Q‘𝐴)) = 1Q)) | |
3 | 1, 2 | mpbii 232 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6488 (class class class)co 7346 Qcnq 10718 1Qc1q 10719 ·Q cmq 10722 *Qcrq 10723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-oadd 8380 df-omul 8381 df-er 8578 df-ni 10738 df-mi 10740 df-lti 10741 df-mpq 10775 df-enq 10777 df-nq 10778 df-erq 10779 df-mq 10781 df-1nq 10782 df-rq 10783 |
This theorem is referenced by: recclnq 10832 recrecnq 10833 dmrecnq 10834 halfnq 10842 ltrnq 10845 addclprlem1 10882 addclprlem2 10883 mulclprlem 10885 1idpr 10895 prlem934 10899 prlem936 10913 reclem3pr 10915 reclem4pr 10916 |
Copyright terms: Public domain | W3C validator |