| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressabs | Structured version Visualization version GIF version | ||
| Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| ressabs | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5261 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ V) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
| 3 | ressress 17155 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
| 4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 6 | sseqin2 4173 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∩ 𝐵) = 𝐵) |
| 8 | 7 | oveq2d 7362 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
| 9 | 4, 8 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 (class class class)co 7346 ↾s cress 17138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 |
| This theorem is referenced by: rescabs 17737 rescabs2 17738 subsubmgm 18615 subsubm 18721 subsubg 19059 subgslw 19526 pgpfaclem1 19993 ablfaclem3 19999 subsubrng 20476 subsubrg 20511 subdrgint 20716 lsslss 20892 xrge0cmn 21379 zringunit 21401 cnmsgngrp 21514 psgninv 21517 zrhpsgnmhm 21519 xrge0gsumle 24747 xrge0tsms 24748 reefgim 26385 xrge0tsmsd 33037 subsdrg 33259 nn0omnd 33304 nn0archi 33307 ressply1evls1 33523 resssra 33594 fedgmullem1 33637 fedgmullem2 33638 fedgmul 33639 fldsdrgfldext2 33670 fldextrspunlem1 33683 fldextrspunfld 33684 fldextrspundgdvdslem 33688 fldextrspundgdvds 33689 algextdeglem1 33725 algextdeglem4 33728 constrext2chnlem 33758 rrhcn 34005 qqtopn 34019 lnmlsslnm 43113 lmhmlnmsplit 43119 gsumge0cl 46408 sge0tsms 46417 amgmlemALT 49834 |
| Copyright terms: Public domain | W3C validator |