MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressabs Structured version   Visualization version   GIF version

Theorem ressabs 16959
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabs ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabs
StepHypRef Expression
1 ssexg 5247 . . . 4 ((𝐵𝐴𝐴𝑋) → 𝐵 ∈ V)
21ancoms 459 . . 3 ((𝐴𝑋𝐵𝐴) → 𝐵 ∈ V)
3 ressress 16958 . . 3 ((𝐴𝑋𝐵 ∈ V) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
42, 3syldan 591 . 2 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5 simpr 485 . . . 4 ((𝐴𝑋𝐵𝐴) → 𝐵𝐴)
6 sseqin2 4149 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
75, 6sylib 217 . . 3 ((𝐴𝑋𝐵𝐴) → (𝐴𝐵) = 𝐵)
87oveq2d 7291 . 2 ((𝐴𝑋𝐵𝐴) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
94, 8eqtrd 2778 1 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  (class class class)co 7275  s cress 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942
This theorem is referenced by:  rescabs  17547  rescabsOLD  17548  rescabs2  17549  subsubm  18455  subsubg  18778  subgslw  19221  pgpfaclem1  19684  ablfaclem3  19690  subsubrg  20050  subdrgint  20071  lsslss  20223  xrge0cmn  20640  zringunit  20688  cnmsgngrp  20784  psgninv  20787  zrhpsgnmhm  20789  xrge0gsumle  23996  xrge0tsms  23997  reefgim  25609  xrge0tsmsd  31317  nn0omnd  31545  nn0archi  31547  fedgmullem1  31710  fedgmullem2  31711  fedgmul  31712  rrhcn  31947  qqtopn  31961  lnmlsslnm  40906  lmhmlnmsplit  40912  gsumge0cl  43909  sge0tsms  43918  subsubmgm  45351  amgmlemALT  46507
  Copyright terms: Public domain W3C validator