![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressabs | Structured version Visualization version GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ressabs | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5285 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ V) | |
2 | 1 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
3 | ressress 17136 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
4 | 2, 3 | syldan 592 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
5 | simpr 486 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
6 | sseqin2 4180 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∩ 𝐵) = 𝐵) |
8 | 7 | oveq2d 7378 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
9 | 4, 8 | eqtrd 2777 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ∩ cin 3914 ⊆ wss 3915 (class class class)co 7362 ↾s cress 17119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-1cn 11116 ax-addcl 11118 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-nn 12161 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 |
This theorem is referenced by: rescabs 17725 rescabsOLD 17726 rescabs2 17727 subsubm 18634 subsubg 18958 subgslw 19405 pgpfaclem1 19867 ablfaclem3 19873 subsubrg 20264 subdrgint 20286 lsslss 20438 xrge0cmn 20855 zringunit 20903 cnmsgngrp 20999 psgninv 21002 zrhpsgnmhm 21004 xrge0gsumle 24212 xrge0tsms 24213 reefgim 25825 xrge0tsmsd 31941 nn0omnd 32177 nn0archi 32179 fedgmullem1 32364 fedgmullem2 32365 fedgmul 32366 rrhcn 32618 qqtopn 32632 lnmlsslnm 41437 lmhmlnmsplit 41443 gsumge0cl 44686 sge0tsms 44695 subsubmgm 46165 amgmlemALT 47324 |
Copyright terms: Public domain | W3C validator |