MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressabs Structured version   Visualization version   GIF version

Theorem ressabs 17294
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabs ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabs
StepHypRef Expression
1 ssexg 5323 . . . 4 ((𝐵𝐴𝐴𝑋) → 𝐵 ∈ V)
21ancoms 458 . . 3 ((𝐴𝑋𝐵𝐴) → 𝐵 ∈ V)
3 ressress 17293 . . 3 ((𝐴𝑋𝐵 ∈ V) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
42, 3syldan 591 . 2 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5 simpr 484 . . . 4 ((𝐴𝑋𝐵𝐴) → 𝐵𝐴)
6 sseqin2 4223 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
75, 6sylib 218 . . 3 ((𝐴𝑋𝐵𝐴) → (𝐴𝐵) = 𝐵)
87oveq2d 7447 . 2 ((𝐴𝑋𝐵𝐴) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
94, 8eqtrd 2777 1 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  (class class class)co 7431  s cress 17274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275
This theorem is referenced by:  rescabs  17877  rescabsOLD  17878  rescabs2  17879  subsubmgm  18723  subsubm  18829  subsubg  19167  subgslw  19634  pgpfaclem1  20101  ablfaclem3  20107  subsubrng  20563  subsubrg  20598  subdrgint  20804  lsslss  20959  xrge0cmn  21426  zringunit  21477  cnmsgngrp  21597  psgninv  21600  zrhpsgnmhm  21602  xrge0gsumle  24855  xrge0tsms  24856  reefgim  26494  xrge0tsmsd  33065  nn0omnd  33373  nn0archi  33375  resssra  33638  fedgmullem1  33680  fedgmullem2  33681  fedgmul  33682  fldsdrgfldext2  33713  fldextrspunlem1  33725  fldextrspunfld  33726  fldextrspundgdvdslem  33730  fldextrspundgdvds  33731  algextdeglem1  33758  algextdeglem4  33761  rrhcn  33998  qqtopn  34012  lnmlsslnm  43093  lmhmlnmsplit  43099  gsumge0cl  46386  sge0tsms  46395  amgmlemALT  49322
  Copyright terms: Public domain W3C validator