Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressabs | Structured version Visualization version GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ressabs | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5216 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ V) | |
2 | 1 | ancoms 462 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
3 | ressress 16799 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
4 | 2, 3 | syldan 594 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
5 | simpr 488 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
6 | sseqin2 4130 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
7 | 5, 6 | sylib 221 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∩ 𝐵) = 𝐵) |
8 | 7 | oveq2d 7229 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
9 | 4, 8 | eqtrd 2777 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 (class class class)co 7213 ↾s cress 16784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 |
This theorem is referenced by: rescabs 17339 rescabs2 17340 subsubm 18243 subsubg 18566 subgslw 19005 pgpfaclem1 19468 ablfaclem3 19474 subsubrg 19826 subdrgint 19847 lsslss 19998 xrge0cmn 20405 zringunit 20453 cnmsgngrp 20541 psgninv 20544 zrhpsgnmhm 20546 xrge0gsumle 23730 xrge0tsms 23731 reefgim 25342 xrge0tsmsd 31036 nn0omnd 31259 nn0archi 31261 fedgmullem1 31424 fedgmullem2 31425 fedgmul 31426 rrhcn 31659 qqtopn 31673 lnmlsslnm 40609 lmhmlnmsplit 40615 gsumge0cl 43584 sge0tsms 43593 subsubmgm 45024 amgmlemALT 46178 |
Copyright terms: Public domain | W3C validator |