![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressabs | Structured version Visualization version GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
ressabs | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5324 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ V) | |
2 | 1 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
3 | ressress 17193 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
4 | 2, 3 | syldan 592 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
5 | simpr 486 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
6 | sseqin2 4216 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
7 | 5, 6 | sylib 217 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∩ 𝐵) = 𝐵) |
8 | 7 | oveq2d 7425 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
9 | 4, 8 | eqtrd 2773 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 ⊆ wss 3949 (class class class)co 7409 ↾s cress 17173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 |
This theorem is referenced by: rescabs 17782 rescabsOLD 17783 rescabs2 17784 subsubm 18697 subsubg 19029 subgslw 19484 pgpfaclem1 19951 ablfaclem3 19957 subsubrg 20345 subdrgint 20419 lsslss 20572 xrge0cmn 20987 zringunit 21036 cnmsgngrp 21132 psgninv 21135 zrhpsgnmhm 21137 xrge0gsumle 24349 xrge0tsms 24350 reefgim 25962 xrge0tsmsd 32209 nn0omnd 32460 nn0archi 32462 fedgmullem1 32714 fedgmullem2 32715 fedgmul 32716 algextdeglem1 32772 rrhcn 32977 qqtopn 32991 lnmlsslnm 41823 lmhmlnmsplit 41829 gsumge0cl 45087 sge0tsms 45096 subsubmgm 46567 subsubrng 46742 amgmlemALT 47850 |
Copyright terms: Public domain | W3C validator |