MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressabs Structured version   Visualization version   GIF version

Theorem ressabs 17225
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabs ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabs
StepHypRef Expression
1 ssexg 5281 . . . 4 ((𝐵𝐴𝐴𝑋) → 𝐵 ∈ V)
21ancoms 458 . . 3 ((𝐴𝑋𝐵𝐴) → 𝐵 ∈ V)
3 ressress 17224 . . 3 ((𝐴𝑋𝐵 ∈ V) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
42, 3syldan 591 . 2 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5 simpr 484 . . . 4 ((𝐴𝑋𝐵𝐴) → 𝐵𝐴)
6 sseqin2 4189 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
75, 6sylib 218 . . 3 ((𝐴𝑋𝐵𝐴) → (𝐴𝐵) = 𝐵)
87oveq2d 7406 . 2 ((𝐴𝑋𝐵𝐴) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
94, 8eqtrd 2765 1 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  (class class class)co 7390  s cress 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208
This theorem is referenced by:  rescabs  17802  rescabs2  17803  subsubmgm  18644  subsubm  18750  subsubg  19088  subgslw  19553  pgpfaclem1  20020  ablfaclem3  20026  subsubrng  20479  subsubrg  20514  subdrgint  20719  lsslss  20874  xrge0cmn  21332  zringunit  21383  cnmsgngrp  21495  psgninv  21498  zrhpsgnmhm  21500  xrge0gsumle  24729  xrge0tsms  24730  reefgim  26367  xrge0tsmsd  33009  subsdrg  33255  nn0omnd  33323  nn0archi  33325  ressply1evls1  33541  resssra  33590  fedgmullem1  33632  fedgmullem2  33633  fedgmul  33634  fldsdrgfldext2  33665  fldextrspunlem1  33677  fldextrspunfld  33678  fldextrspundgdvdslem  33682  fldextrspundgdvds  33683  algextdeglem1  33714  algextdeglem4  33717  constrext2chnlem  33747  rrhcn  33994  qqtopn  34008  lnmlsslnm  43077  lmhmlnmsplit  43083  gsumge0cl  46376  sge0tsms  46385  amgmlemALT  49796
  Copyright terms: Public domain W3C validator