MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressabs Structured version   Visualization version   GIF version

Theorem ressabs 17177
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ressabs ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))

Proof of Theorem ressabs
StepHypRef Expression
1 ssexg 5265 . . . 4 ((𝐵𝐴𝐴𝑋) → 𝐵 ∈ V)
21ancoms 458 . . 3 ((𝐴𝑋𝐵𝐴) → 𝐵 ∈ V)
3 ressress 17176 . . 3 ((𝐴𝑋𝐵 ∈ V) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
42, 3syldan 591 . 2 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s (𝐴𝐵)))
5 simpr 484 . . . 4 ((𝐴𝑋𝐵𝐴) → 𝐵𝐴)
6 sseqin2 4176 . . . 4 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
75, 6sylib 218 . . 3 ((𝐴𝑋𝐵𝐴) → (𝐴𝐵) = 𝐵)
87oveq2d 7369 . 2 ((𝐴𝑋𝐵𝐴) → (𝑊s (𝐴𝐵)) = (𝑊s 𝐵))
94, 8eqtrd 2764 1 ((𝐴𝑋𝐵𝐴) → ((𝑊s 𝐴) ↾s 𝐵) = (𝑊s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  (class class class)co 7353  s cress 17159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160
This theorem is referenced by:  rescabs  17758  rescabs2  17759  subsubmgm  18602  subsubm  18708  subsubg  19046  subgslw  19513  pgpfaclem1  19980  ablfaclem3  19986  subsubrng  20466  subsubrg  20501  subdrgint  20706  lsslss  20882  xrge0cmn  21369  zringunit  21391  cnmsgngrp  21504  psgninv  21507  zrhpsgnmhm  21509  xrge0gsumle  24738  xrge0tsms  24739  reefgim  26376  xrge0tsmsd  33028  subsdrg  33247  nn0omnd  33292  nn0archi  33294  ressply1evls1  33510  resssra  33559  fedgmullem1  33601  fedgmullem2  33602  fedgmul  33603  fldsdrgfldext2  33634  fldextrspunlem1  33646  fldextrspunfld  33647  fldextrspundgdvdslem  33651  fldextrspundgdvds  33652  algextdeglem1  33683  algextdeglem4  33686  constrext2chnlem  33716  rrhcn  33963  qqtopn  33977  lnmlsslnm  43054  lmhmlnmsplit  43060  gsumge0cl  46353  sge0tsms  46362  amgmlemALT  49789
  Copyright terms: Public domain W3C validator