| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressabs | Structured version Visualization version GIF version | ||
| Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| ressabs | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg 5263 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐴 ∈ 𝑋) → 𝐵 ∈ V) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ V) |
| 3 | ressress 17160 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | |
| 4 | 2, 3 | syldan 591 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 6 | sseqin2 4172 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∩ 𝐵) = 𝐵) |
| 8 | 7 | oveq2d 7368 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → (𝑊 ↾s (𝐴 ∩ 𝐵)) = (𝑊 ↾s 𝐵)) |
| 9 | 4, 8 | eqtrd 2768 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 (class class class)co 7352 ↾s cress 17143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 |
| This theorem is referenced by: rescabs 17742 rescabs2 17743 subsubmgm 18620 subsubm 18726 subsubg 19064 subgslw 19530 pgpfaclem1 19997 ablfaclem3 20003 subsubrng 20480 subsubrg 20515 subdrgint 20720 lsslss 20896 xrge0cmn 21383 zringunit 21405 cnmsgngrp 21518 psgninv 21521 zrhpsgnmhm 21523 xrge0gsumle 24750 xrge0tsms 24751 reefgim 26388 xrge0tsmsd 33049 subsdrg 33271 nn0omnd 33316 nn0archi 33319 ressply1evls1 33535 resssra 33620 fedgmullem1 33663 fedgmullem2 33664 fedgmul 33665 fldsdrgfldext2 33696 fldextrspunlem1 33709 fldextrspunfld 33710 fldextrspundgdvdslem 33714 fldextrspundgdvds 33715 algextdeglem1 33751 algextdeglem4 33754 constrext2chnlem 33784 rrhcn 34031 qqtopn 34045 lnmlsslnm 43198 lmhmlnmsplit 43204 gsumge0cl 46493 sge0tsms 46502 amgmlemALT 49928 |
| Copyright terms: Public domain | W3C validator |