Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 21970 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
3 | toponmax 21983 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
4 | ssexg 5242 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | syl2anr 596 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
6 | resttop 22219 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
7 | 1, 5, 6 | syl2an2r 681 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
9 | sseqin2 4146 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
10 | 8, 9 | sylib 217 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
13 | elrestr 17056 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
14 | 11, 5, 12, 13 | syl3anc 1369 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
15 | 10, 14 | eqeltrrd 2840 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
16 | elssuni 4868 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
18 | restval 17054 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
19 | 5, 18 | syldan 590 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
20 | inss2 4160 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
21 | vex 3426 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
22 | 21 | inex1 5236 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
23 | 22 | elpw 4534 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
24 | 20, 23 | mpbir 230 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
26 | 25 | fmpttd 6971 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
27 | 26 | frnd 6592 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
28 | 19, 27 | eqsstrd 3955 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
29 | sspwuni 5025 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
30 | 28, 29 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
31 | 17, 30 | eqssd 3934 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
32 | istopon 21969 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
33 | 7, 31, 32 | sylanbrc 582 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 TopOnctopon 21967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 |
This theorem is referenced by: restuni 22221 stoig 22222 restsn2 22230 restlp 22242 restperf 22243 perfopn 22244 cnrest 22344 cnrest2 22345 cnrest2r 22346 cnpresti 22347 cnprest 22348 cnprest2 22349 restcnrm 22421 connsuba 22479 kgentopon 22597 1stckgenlem 22612 kgen2ss 22614 kgencn 22615 xkoinjcn 22746 qtoprest 22776 flimrest 23042 fclsrest 23083 flfcntr 23102 efmndtmd 23160 symgtgp 23165 dvrcn 23243 sszcld 23886 divcn 23937 cncfmptc 23981 cncfmptid 23982 cncfmpt2f 23984 cdivcncf 23990 cnmpopc 23997 icchmeo 24010 htpycc 24049 pcocn 24086 pcohtpylem 24088 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 relcmpcmet 24387 limcvallem 24940 ellimc2 24946 limcres 24955 cnplimc 24956 cnlimc 24957 limccnp 24960 limccnp2 24961 dvbss 24970 perfdvf 24972 dvreslem 24978 dvres2lem 24979 dvcnp2 24989 dvcn 24990 dvaddbr 25007 dvmulbr 25008 dvcmulf 25014 dvmptres2 25031 dvmptcmul 25033 dvmptntr 25040 dvmptfsum 25044 dvcnvlem 25045 dvcnv 25046 lhop1lem 25082 lhop2 25084 lhop 25085 dvcnvrelem2 25087 dvcnvre 25088 ftc1lem3 25107 ftc1cn 25112 taylthlem1 25437 ulmdvlem3 25466 psercn 25490 abelth 25505 logcn 25707 cxpcn 25803 cxpcn2 25804 cxpcn3 25806 resqrtcn 25807 sqrtcn 25808 loglesqrt 25816 xrlimcnp 26023 efrlim 26024 ftalem3 26129 xrge0pluscn 31792 xrge0mulc1cn 31793 lmlimxrge0 31800 pnfneige0 31803 lmxrge0 31804 esumcvg 31954 cxpcncf1 32475 cvxpconn 33104 cvxsconn 33105 cvmsf1o 33134 cvmliftlem8 33154 cvmlift2lem9a 33165 cvmlift2lem11 33175 cvmlift3lem6 33186 ivthALT 34451 poimir 35737 broucube 35738 cnambfre 35752 ftc1cnnc 35776 areacirclem2 35793 areacirclem4 35795 fsumcncf 43309 ioccncflimc 43316 cncfuni 43317 icccncfext 43318 icocncflimc 43320 cncfiooicclem1 43324 cxpcncf2 43330 dvmptconst 43346 dvmptidg 43348 dvresntr 43349 itgsubsticclem 43406 dirkercncflem2 43535 dirkercncflem4 43537 fourierdlem32 43570 fourierdlem33 43571 fourierdlem62 43599 fourierdlem93 43630 fourierdlem101 43638 |
Copyright terms: Public domain | W3C validator |