Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22062 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
3 | toponmax 22075 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
4 | ssexg 5247 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
6 | resttop 22311 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
7 | 1, 5, 6 | syl2an2r 682 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
8 | simpr 485 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
9 | sseqin2 4149 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
10 | 8, 9 | sylib 217 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
11 | simpl 483 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
12 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
13 | elrestr 17139 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
14 | 11, 5, 12, 13 | syl3anc 1370 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
15 | 10, 14 | eqeltrrd 2840 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
16 | elssuni 4871 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
18 | restval 17137 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
20 | inss2 4163 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
21 | vex 3436 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
22 | 21 | inex1 5241 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
23 | 22 | elpw 4537 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
24 | 20, 23 | mpbir 230 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
26 | 25 | fmpttd 6989 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
27 | 26 | frnd 6608 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
28 | 19, 27 | eqsstrd 3959 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
29 | sspwuni 5029 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
30 | 28, 29 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
31 | 17, 30 | eqssd 3938 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
32 | istopon 22061 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ↦ cmpt 5157 ran crn 5590 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 |
This theorem is referenced by: restuni 22313 stoig 22314 restsn2 22322 restlp 22334 restperf 22335 perfopn 22336 cnrest 22436 cnrest2 22437 cnrest2r 22438 cnpresti 22439 cnprest 22440 cnprest2 22441 restcnrm 22513 connsuba 22571 kgentopon 22689 1stckgenlem 22704 kgen2ss 22706 kgencn 22707 xkoinjcn 22838 qtoprest 22868 flimrest 23134 fclsrest 23175 flfcntr 23194 efmndtmd 23252 symgtgp 23257 dvrcn 23335 sszcld 23980 divcn 24031 cncfmptc 24075 cncfmptid 24076 cncfmpt2f 24078 cdivcncf 24084 cnmpopc 24091 icchmeo 24104 htpycc 24143 pcocn 24180 pcohtpylem 24182 pcopt 24185 pcopt2 24186 pcoass 24187 pcorevlem 24189 relcmpcmet 24482 limcvallem 25035 ellimc2 25041 limcres 25050 cnplimc 25051 cnlimc 25052 limccnp 25055 limccnp2 25056 dvbss 25065 perfdvf 25067 dvreslem 25073 dvres2lem 25074 dvcnp2 25084 dvcn 25085 dvaddbr 25102 dvmulbr 25103 dvcmulf 25109 dvmptres2 25126 dvmptcmul 25128 dvmptntr 25135 dvmptfsum 25139 dvcnvlem 25140 dvcnv 25141 lhop1lem 25177 lhop2 25179 lhop 25180 dvcnvrelem2 25182 dvcnvre 25183 ftc1lem3 25202 ftc1cn 25207 taylthlem1 25532 ulmdvlem3 25561 psercn 25585 abelth 25600 logcn 25802 cxpcn 25898 cxpcn2 25899 cxpcn3 25901 resqrtcn 25902 sqrtcn 25903 loglesqrt 25911 xrlimcnp 26118 efrlim 26119 ftalem3 26224 xrge0pluscn 31890 xrge0mulc1cn 31891 lmlimxrge0 31898 pnfneige0 31901 lmxrge0 31902 esumcvg 32054 cxpcncf1 32575 cvxpconn 33204 cvxsconn 33205 cvmsf1o 33234 cvmliftlem8 33254 cvmlift2lem9a 33265 cvmlift2lem11 33275 cvmlift3lem6 33286 ivthALT 34524 poimir 35810 broucube 35811 cnambfre 35825 ftc1cnnc 35849 areacirclem2 35866 areacirclem4 35868 fsumcncf 43419 ioccncflimc 43426 cncfuni 43427 icccncfext 43428 icocncflimc 43430 cncfiooicclem1 43434 cxpcncf2 43440 dvmptconst 43456 dvmptidg 43458 dvresntr 43459 itgsubsticclem 43516 dirkercncflem2 43645 dirkercncflem4 43647 fourierdlem32 43680 fourierdlem33 43681 fourierdlem62 43709 fourierdlem93 43740 fourierdlem101 43748 |
Copyright terms: Public domain | W3C validator |