| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22829 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | toponmax 22842 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | ssexg 5263 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | resttop 23076 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
| 7 | 1, 5, 6 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 9 | sseqin2 4172 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 13 | elrestr 17334 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 15 | 10, 14 | eqeltrrd 2834 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
| 16 | elssuni 4889 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
| 18 | restval 17332 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 20 | inss2 4187 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 21 | vex 3441 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 5257 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
| 23 | 22 | elpw 4553 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | 20, 23 | mpbir 231 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
| 26 | 25 | fmpttd 7054 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
| 27 | 26 | frnd 6664 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
| 28 | 19, 27 | eqsstrd 3965 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 29 | sspwuni 5050 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
| 31 | 17, 30 | eqssd 3948 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 32 | istopon 22828 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
| 33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ↾t crest 17326 Topctop 22809 TopOnctopon 22826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-en 8876 df-fin 8879 df-fi 9302 df-rest 17328 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 |
| This theorem is referenced by: restuni 23078 stoig 23079 restsn2 23087 restlp 23099 restperf 23100 perfopn 23101 cnrest 23201 cnrest2 23202 cnrest2r 23203 cnpresti 23204 cnprest 23205 cnprest2 23206 restcnrm 23278 connsuba 23336 kgentopon 23454 1stckgenlem 23469 kgen2ss 23471 kgencn 23472 xkoinjcn 23603 qtoprest 23633 flimrest 23899 fclsrest 23940 flfcntr 23959 efmndtmd 24017 symgtgp 24022 dvrcn 24100 sszcld 24734 divcnOLD 24785 divcn 24787 cncfmptc 24833 cncfmptid 24834 cncfmpt2f 24836 cdivcncf 24842 cnmpopc 24850 icchmeo 24866 icchmeoOLD 24867 htpycc 24907 pcocn 24945 pcohtpylem 24947 pcopt 24950 pcopt2 24951 pcoass 24952 pcorevlem 24954 relcmpcmet 25246 mulcncf 25374 limcvallem 25800 ellimc2 25806 limcres 25815 cnplimc 25816 cnlimc 25817 limccnp 25820 limccnp2 25821 dvbss 25830 perfdvf 25832 dvreslem 25838 dvres2lem 25839 dvcnp2 25849 dvcnp2OLD 25850 dvcn 25851 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 dvcmulf 25876 dvmptres2 25894 dvmptcmul 25896 dvmptntr 25903 dvmptfsum 25907 dvcnvlem 25908 dvcnv 25909 lhop1lem 25946 lhop2 25948 lhop 25949 dvcnvrelem2 25951 dvcnvre 25952 ftc1lem3 25973 ftc1cn 25978 taylthlem1 26309 ulmdvlem3 26339 psercn 26364 abelth 26379 logcn 26584 cxpcn 26682 cxpcnOLD 26683 cxpcn2 26684 cxpcn3 26686 resqrtcn 26687 sqrtcn 26688 loglesqrt 26699 xrlimcnp 26906 efrlim 26907 efrlimOLD 26908 ftalem3 27013 xrge0pluscn 33974 xrge0mulc1cn 33975 lmlimxrge0 33982 pnfneige0 33985 lmxrge0 33986 esumcvg 34120 cxpcncf1 34629 cvxpconn 35307 cvxsconn 35308 cvmsf1o 35337 cvmliftlem8 35357 cvmlift2lem9a 35368 cvmlift2lem11 35378 cvmlift3lem6 35389 ivthALT 36400 poimir 37713 broucube 37714 cnambfre 37728 ftc1cnnc 37752 areacirclem2 37769 areacirclem4 37771 fsumcncf 46000 ioccncflimc 46007 cncfuni 46008 icccncfext 46009 icocncflimc 46011 cncfiooicclem1 46015 cxpcncf2 46021 dvmptconst 46037 dvmptidg 46039 dvresntr 46040 itgsubsticclem 46097 dirkercncflem2 46226 dirkercncflem4 46228 fourierdlem32 46261 fourierdlem33 46262 fourierdlem62 46290 fourierdlem93 46321 fourierdlem101 46329 |
| Copyright terms: Public domain | W3C validator |