![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version |
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon | β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22422 | . . 3 β’ (π½ β (TopOnβπ) β π½ β Top) | |
2 | id 22 | . . . 4 β’ (π΄ β π β π΄ β π) | |
3 | toponmax 22435 | . . . 4 β’ (π½ β (TopOnβπ) β π β π½) | |
4 | ssexg 5323 | . . . 4 β’ ((π΄ β π β§ π β π½) β π΄ β V) | |
5 | 2, 3, 4 | syl2anr 597 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β V) |
6 | resttop 22671 | . . 3 β’ ((π½ β Top β§ π΄ β V) β (π½ βΎt π΄) β Top) | |
7 | 1, 5, 6 | syl2an2r 683 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β Top) |
8 | simpr 485 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β π) | |
9 | sseqin2 4215 | . . . . . 6 β’ (π΄ β π β (π β© π΄) = π΄) | |
10 | 8, 9 | sylib 217 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β© π΄) = π΄) |
11 | simpl 483 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π½ β (TopOnβπ)) | |
12 | 3 | adantr 481 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π β π½) |
13 | elrestr 17376 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β V β§ π β π½) β (π β© π΄) β (π½ βΎt π΄)) | |
14 | 11, 5, 12, 13 | syl3anc 1371 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π β© π΄) β (π½ βΎt π΄)) |
15 | 10, 14 | eqeltrrd 2834 | . . . 4 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β (π½ βΎt π΄)) |
16 | elssuni 4941 | . . . 4 β’ (π΄ β (π½ βΎt π΄) β π΄ β βͺ (π½ βΎt π΄)) | |
17 | 15, 16 | syl 17 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ β βͺ (π½ βΎt π΄)) |
18 | restval 17374 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β V) β (π½ βΎt π΄) = ran (π₯ β π½ β¦ (π₯ β© π΄))) | |
19 | 5, 18 | syldan 591 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) = ran (π₯ β π½ β¦ (π₯ β© π΄))) |
20 | inss2 4229 | . . . . . . . . 9 β’ (π₯ β© π΄) β π΄ | |
21 | vex 3478 | . . . . . . . . . . 11 β’ π₯ β V | |
22 | 21 | inex1 5317 | . . . . . . . . . 10 β’ (π₯ β© π΄) β V |
23 | 22 | elpw 4606 | . . . . . . . . 9 β’ ((π₯ β© π΄) β π« π΄ β (π₯ β© π΄) β π΄) |
24 | 20, 23 | mpbir 230 | . . . . . . . 8 β’ (π₯ β© π΄) β π« π΄ |
25 | 24 | a1i 11 | . . . . . . 7 β’ (((π½ β (TopOnβπ) β§ π΄ β π) β§ π₯ β π½) β (π₯ β© π΄) β π« π΄) |
26 | 25 | fmpttd 7116 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π₯ β π½ β¦ (π₯ β© π΄)):π½βΆπ« π΄) |
27 | 26 | frnd 6725 | . . . . 5 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β ran (π₯ β π½ β¦ (π₯ β© π΄)) β π« π΄) |
28 | 19, 27 | eqsstrd 4020 | . . . 4 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β π« π΄) |
29 | sspwuni 5103 | . . . 4 β’ ((π½ βΎt π΄) β π« π΄ β βͺ (π½ βΎt π΄) β π΄) | |
30 | 28, 29 | sylib 217 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β βͺ (π½ βΎt π΄) β π΄) |
31 | 17, 30 | eqssd 3999 | . 2 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
32 | istopon 22421 | . 2 β’ ((π½ βΎt π΄) β (TopOnβπ΄) β ((π½ βΎt π΄) β Top β§ π΄ = βͺ (π½ βΎt π΄))) | |
33 | 7, 31, 32 | sylanbrc 583 | 1 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β© cin 3947 β wss 3948 π« cpw 4602 βͺ cuni 4908 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7411 βΎt crest 17368 Topctop 22402 TopOnctopon 22419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-en 8942 df-fin 8945 df-fi 9408 df-rest 17370 df-topgen 17391 df-top 22403 df-topon 22420 df-bases 22456 |
This theorem is referenced by: restuni 22673 stoig 22674 restsn2 22682 restlp 22694 restperf 22695 perfopn 22696 cnrest 22796 cnrest2 22797 cnrest2r 22798 cnpresti 22799 cnprest 22800 cnprest2 22801 restcnrm 22873 connsuba 22931 kgentopon 23049 1stckgenlem 23064 kgen2ss 23066 kgencn 23067 xkoinjcn 23198 qtoprest 23228 flimrest 23494 fclsrest 23535 flfcntr 23554 efmndtmd 23612 symgtgp 23617 dvrcn 23695 sszcld 24340 divcn 24391 cncfmptc 24435 cncfmptid 24436 cncfmpt2f 24438 cdivcncf 24444 cnmpopc 24451 icchmeo 24464 htpycc 24503 pcocn 24540 pcohtpylem 24542 pcopt 24545 pcopt2 24546 pcoass 24547 pcorevlem 24549 relcmpcmet 24842 limcvallem 25395 ellimc2 25401 limcres 25410 cnplimc 25411 cnlimc 25412 limccnp 25415 limccnp2 25416 dvbss 25425 perfdvf 25427 dvreslem 25433 dvres2lem 25434 dvcnp2 25444 dvcn 25445 dvaddbr 25462 dvmulbr 25463 dvcmulf 25469 dvmptres2 25486 dvmptcmul 25488 dvmptntr 25495 dvmptfsum 25499 dvcnvlem 25500 dvcnv 25501 lhop1lem 25537 lhop2 25539 lhop 25540 dvcnvrelem2 25542 dvcnvre 25543 ftc1lem3 25562 ftc1cn 25567 taylthlem1 25892 ulmdvlem3 25921 psercn 25945 abelth 25960 logcn 26162 cxpcn 26260 cxpcn2 26261 cxpcn3 26263 resqrtcn 26264 sqrtcn 26265 loglesqrt 26273 xrlimcnp 26480 efrlim 26481 ftalem3 26586 xrge0pluscn 32989 xrge0mulc1cn 32990 lmlimxrge0 32997 pnfneige0 33000 lmxrge0 33001 esumcvg 33153 cxpcncf1 33676 cvxpconn 34302 cvxsconn 34303 cvmsf1o 34332 cvmliftlem8 34352 cvmlift2lem9a 34363 cvmlift2lem11 34373 cvmlift3lem6 34384 gg-divcn 35232 gg-icchmeo 35239 gg-mulcncf 35242 gg-dvcnp2 35243 gg-dvmulbr 35244 gg-cxpcn 35253 ivthALT 35306 poimir 36607 broucube 36608 cnambfre 36622 ftc1cnnc 36646 areacirclem2 36663 areacirclem4 36665 fsumcncf 44673 ioccncflimc 44680 cncfuni 44681 icccncfext 44682 icocncflimc 44684 cncfiooicclem1 44688 cxpcncf2 44694 dvmptconst 44710 dvmptidg 44712 dvresntr 44713 itgsubsticclem 44770 dirkercncflem2 44899 dirkercncflem4 44901 fourierdlem32 44934 fourierdlem33 44935 fourierdlem62 44963 fourierdlem93 44994 fourierdlem101 45002 |
Copyright terms: Public domain | W3C validator |