MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 21875
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 21627 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
3 toponmax 21640 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
4 ssexg 5197 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
52, 3, 4syl2anr 599 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
6 resttop 21874 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
71, 5, 6syl2an2r 684 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
8 simpr 488 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
9 sseqin2 4122 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
108, 9sylib 221 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
11 simpl 486 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
123adantr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
13 elrestr 16774 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1411, 5, 12, 13syl3anc 1368 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1510, 14eqeltrrd 2853 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
16 elssuni 4833 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1715, 16syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
18 restval 16772 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
195, 18syldan 594 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
20 inss2 4136 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
21 vex 3413 . . . . . . . . . . 11 𝑥 ∈ V
2221inex1 5191 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2322elpw 4501 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2420, 23mpbir 234 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2524a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
2625fmpttd 6876 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
2726frnd 6510 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
2819, 27eqsstrd 3932 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
29 sspwuni 4991 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3028, 29sylib 221 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3117, 30eqssd 3911 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
32 istopon 21626 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
337, 31, 32sylanbrc 586 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cin 3859  wss 3860  𝒫 cpw 4497   cuni 4801  cmpt 5116  ran crn 5529  cfv 6340  (class class class)co 7156  t crest 16766  Topctop 21607  TopOnctopon 21624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-en 8541  df-fin 8544  df-fi 8921  df-rest 16768  df-topgen 16789  df-top 21608  df-topon 21625  df-bases 21660
This theorem is referenced by:  restuni  21876  stoig  21877  restsn2  21885  restlp  21897  restperf  21898  perfopn  21899  cnrest  21999  cnrest2  22000  cnrest2r  22001  cnpresti  22002  cnprest  22003  cnprest2  22004  restcnrm  22076  connsuba  22134  kgentopon  22252  1stckgenlem  22267  kgen2ss  22269  kgencn  22270  xkoinjcn  22401  qtoprest  22431  flimrest  22697  fclsrest  22738  flfcntr  22757  efmndtmd  22815  symgtgp  22820  dvrcn  22898  sszcld  23532  divcn  23583  cncfmptc  23627  cncfmptid  23628  cncfmpt2f  23630  cdivcncf  23636  cnmpopc  23643  icchmeo  23656  htpycc  23695  pcocn  23732  pcohtpylem  23734  pcopt  23737  pcopt2  23738  pcoass  23739  pcorevlem  23741  relcmpcmet  24032  limcvallem  24584  ellimc2  24590  limcres  24599  cnplimc  24600  cnlimc  24601  limccnp  24604  limccnp2  24605  dvbss  24614  perfdvf  24616  dvreslem  24622  dvres2lem  24623  dvcnp2  24633  dvcn  24634  dvaddbr  24651  dvmulbr  24652  dvcmulf  24658  dvmptres2  24675  dvmptcmul  24677  dvmptntr  24684  dvmptfsum  24688  dvcnvlem  24689  dvcnv  24690  lhop1lem  24726  lhop2  24728  lhop  24729  dvcnvrelem2  24731  dvcnvre  24732  ftc1lem3  24751  ftc1cn  24756  taylthlem1  25081  ulmdvlem3  25110  psercn  25134  abelth  25149  logcn  25351  cxpcn  25447  cxpcn2  25448  cxpcn3  25450  resqrtcn  25451  sqrtcn  25452  loglesqrt  25460  xrlimcnp  25667  efrlim  25668  ftalem3  25773  xrge0pluscn  31424  xrge0mulc1cn  31425  lmlimxrge0  31432  pnfneige0  31435  lmxrge0  31436  esumcvg  31586  cxpcncf1  32107  cvxpconn  32733  cvxsconn  32734  cvmsf1o  32763  cvmliftlem8  32783  cvmlift2lem9a  32794  cvmlift2lem11  32804  cvmlift3lem6  32815  ivthALT  34108  poimir  35405  broucube  35406  cnambfre  35420  ftc1cnnc  35444  areacirclem2  35461  areacirclem4  35463  fsumcncf  42931  ioccncflimc  42938  cncfuni  42939  icccncfext  42940  icocncflimc  42942  cncfiooicclem1  42946  cxpcncf2  42952  dvmptconst  42968  dvmptidg  42970  dvresntr  42971  itgsubsticclem  43028  dirkercncflem2  43157  dirkercncflem4  43159  fourierdlem32  43192  fourierdlem33  43193  fourierdlem62  43221  fourierdlem93  43252  fourierdlem101  43260
  Copyright terms: Public domain W3C validator