| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22816 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | toponmax 22829 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | ssexg 5265 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | resttop 23063 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
| 7 | 1, 5, 6 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 9 | sseqin2 4176 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 13 | elrestr 17350 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 15 | 10, 14 | eqeltrrd 2829 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
| 16 | elssuni 4891 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
| 18 | restval 17348 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 20 | inss2 4191 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 21 | vex 3442 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 5259 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
| 23 | 22 | elpw 4557 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | 20, 23 | mpbir 231 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
| 26 | 25 | fmpttd 7053 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
| 27 | 26 | frnd 6664 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
| 28 | 19, 27 | eqsstrd 3972 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 29 | sspwuni 5052 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
| 31 | 17, 30 | eqssd 3955 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 32 | istopon 22815 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
| 33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ↾t crest 17342 Topctop 22796 TopOnctopon 22813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-en 8880 df-fin 8883 df-fi 9320 df-rest 17344 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 |
| This theorem is referenced by: restuni 23065 stoig 23066 restsn2 23074 restlp 23086 restperf 23087 perfopn 23088 cnrest 23188 cnrest2 23189 cnrest2r 23190 cnpresti 23191 cnprest 23192 cnprest2 23193 restcnrm 23265 connsuba 23323 kgentopon 23441 1stckgenlem 23456 kgen2ss 23458 kgencn 23459 xkoinjcn 23590 qtoprest 23620 flimrest 23886 fclsrest 23927 flfcntr 23946 efmndtmd 24004 symgtgp 24009 dvrcn 24087 sszcld 24722 divcnOLD 24773 divcn 24775 cncfmptc 24821 cncfmptid 24822 cncfmpt2f 24824 cdivcncf 24830 cnmpopc 24838 icchmeo 24854 icchmeoOLD 24855 htpycc 24895 pcocn 24933 pcohtpylem 24935 pcopt 24938 pcopt2 24939 pcoass 24940 pcorevlem 24942 relcmpcmet 25234 mulcncf 25362 limcvallem 25788 ellimc2 25794 limcres 25803 cnplimc 25804 cnlimc 25805 limccnp 25808 limccnp2 25809 dvbss 25818 perfdvf 25820 dvreslem 25826 dvres2lem 25827 dvcnp2 25837 dvcnp2OLD 25838 dvcn 25839 dvaddbr 25856 dvmulbr 25857 dvmulbrOLD 25858 dvcmulf 25864 dvmptres2 25882 dvmptcmul 25884 dvmptntr 25891 dvmptfsum 25895 dvcnvlem 25896 dvcnv 25897 lhop1lem 25934 lhop2 25936 lhop 25937 dvcnvrelem2 25939 dvcnvre 25940 ftc1lem3 25961 ftc1cn 25966 taylthlem1 26297 ulmdvlem3 26327 psercn 26352 abelth 26367 logcn 26572 cxpcn 26670 cxpcnOLD 26671 cxpcn2 26672 cxpcn3 26674 resqrtcn 26675 sqrtcn 26676 loglesqrt 26687 xrlimcnp 26894 efrlim 26895 efrlimOLD 26896 ftalem3 27001 xrge0pluscn 33906 xrge0mulc1cn 33907 lmlimxrge0 33914 pnfneige0 33917 lmxrge0 33918 esumcvg 34052 cxpcncf1 34562 cvxpconn 35214 cvxsconn 35215 cvmsf1o 35244 cvmliftlem8 35264 cvmlift2lem9a 35275 cvmlift2lem11 35285 cvmlift3lem6 35296 ivthALT 36308 poimir 37632 broucube 37633 cnambfre 37647 ftc1cnnc 37671 areacirclem2 37688 areacirclem4 37690 fsumcncf 45860 ioccncflimc 45867 cncfuni 45868 icccncfext 45869 icocncflimc 45871 cncfiooicclem1 45875 cxpcncf2 45881 dvmptconst 45897 dvmptidg 45899 dvresntr 45900 itgsubsticclem 45957 dirkercncflem2 46086 dirkercncflem4 46088 fourierdlem32 46121 fourierdlem33 46122 fourierdlem62 46150 fourierdlem93 46181 fourierdlem101 46189 |
| Copyright terms: Public domain | W3C validator |