| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22849 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | toponmax 22862 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | ssexg 5293 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | resttop 23096 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
| 7 | 1, 5, 6 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 9 | sseqin2 4198 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 13 | elrestr 17440 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 15 | 10, 14 | eqeltrrd 2835 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
| 16 | elssuni 4913 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
| 18 | restval 17438 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 20 | inss2 4213 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 21 | vex 3463 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 5287 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
| 23 | 22 | elpw 4579 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | 20, 23 | mpbir 231 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
| 26 | 25 | fmpttd 7104 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
| 27 | 26 | frnd 6713 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
| 28 | 19, 27 | eqsstrd 3993 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 29 | sspwuni 5076 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
| 31 | 17, 30 | eqssd 3976 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 32 | istopon 22848 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
| 33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ↦ cmpt 5201 ran crn 5655 ‘cfv 6530 (class class class)co 7403 ↾t crest 17432 Topctop 22829 TopOnctopon 22846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-en 8958 df-fin 8961 df-fi 9421 df-rest 17434 df-topgen 17455 df-top 22830 df-topon 22847 df-bases 22882 |
| This theorem is referenced by: restuni 23098 stoig 23099 restsn2 23107 restlp 23119 restperf 23120 perfopn 23121 cnrest 23221 cnrest2 23222 cnrest2r 23223 cnpresti 23224 cnprest 23225 cnprest2 23226 restcnrm 23298 connsuba 23356 kgentopon 23474 1stckgenlem 23489 kgen2ss 23491 kgencn 23492 xkoinjcn 23623 qtoprest 23653 flimrest 23919 fclsrest 23960 flfcntr 23979 efmndtmd 24037 symgtgp 24042 dvrcn 24120 sszcld 24755 divcnOLD 24806 divcn 24808 cncfmptc 24854 cncfmptid 24855 cncfmpt2f 24857 cdivcncf 24863 cnmpopc 24871 icchmeo 24887 icchmeoOLD 24888 htpycc 24928 pcocn 24966 pcohtpylem 24968 pcopt 24971 pcopt2 24972 pcoass 24973 pcorevlem 24975 relcmpcmet 25268 mulcncf 25396 limcvallem 25822 ellimc2 25828 limcres 25837 cnplimc 25838 cnlimc 25839 limccnp 25842 limccnp2 25843 dvbss 25852 perfdvf 25854 dvreslem 25860 dvres2lem 25861 dvcnp2 25871 dvcnp2OLD 25872 dvcn 25873 dvaddbr 25890 dvmulbr 25891 dvmulbrOLD 25892 dvcmulf 25898 dvmptres2 25916 dvmptcmul 25918 dvmptntr 25925 dvmptfsum 25929 dvcnvlem 25930 dvcnv 25931 lhop1lem 25968 lhop2 25970 lhop 25971 dvcnvrelem2 25973 dvcnvre 25974 ftc1lem3 25995 ftc1cn 26000 taylthlem1 26331 ulmdvlem3 26361 psercn 26386 abelth 26401 logcn 26606 cxpcn 26704 cxpcnOLD 26705 cxpcn2 26706 cxpcn3 26708 resqrtcn 26709 sqrtcn 26710 loglesqrt 26721 xrlimcnp 26928 efrlim 26929 efrlimOLD 26930 ftalem3 27035 xrge0pluscn 33917 xrge0mulc1cn 33918 lmlimxrge0 33925 pnfneige0 33928 lmxrge0 33929 esumcvg 34063 cxpcncf1 34573 cvxpconn 35210 cvxsconn 35211 cvmsf1o 35240 cvmliftlem8 35260 cvmlift2lem9a 35271 cvmlift2lem11 35281 cvmlift3lem6 35292 ivthALT 36299 poimir 37623 broucube 37624 cnambfre 37638 ftc1cnnc 37662 areacirclem2 37679 areacirclem4 37681 fsumcncf 45855 ioccncflimc 45862 cncfuni 45863 icccncfext 45864 icocncflimc 45866 cncfiooicclem1 45870 cxpcncf2 45876 dvmptconst 45892 dvmptidg 45894 dvresntr 45895 itgsubsticclem 45952 dirkercncflem2 46081 dirkercncflem4 46083 fourierdlem32 46116 fourierdlem33 46117 fourierdlem62 46145 fourierdlem93 46176 fourierdlem101 46184 |
| Copyright terms: Public domain | W3C validator |