| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22807 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | toponmax 22820 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | ssexg 5281 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | resttop 23054 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
| 7 | 1, 5, 6 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 9 | sseqin2 4189 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 13 | elrestr 17398 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 15 | 10, 14 | eqeltrrd 2830 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
| 16 | elssuni 4904 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
| 18 | restval 17396 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 20 | inss2 4204 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 21 | vex 3454 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 5275 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
| 23 | 22 | elpw 4570 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | 20, 23 | mpbir 231 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
| 26 | 25 | fmpttd 7090 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
| 27 | 26 | frnd 6699 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
| 28 | 19, 27 | eqsstrd 3984 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 29 | sspwuni 5067 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
| 31 | 17, 30 | eqssd 3967 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 32 | istopon 22806 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
| 33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ↦ cmpt 5191 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ↾t crest 17390 Topctop 22787 TopOnctopon 22804 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 |
| This theorem is referenced by: restuni 23056 stoig 23057 restsn2 23065 restlp 23077 restperf 23078 perfopn 23079 cnrest 23179 cnrest2 23180 cnrest2r 23181 cnpresti 23182 cnprest 23183 cnprest2 23184 restcnrm 23256 connsuba 23314 kgentopon 23432 1stckgenlem 23447 kgen2ss 23449 kgencn 23450 xkoinjcn 23581 qtoprest 23611 flimrest 23877 fclsrest 23918 flfcntr 23937 efmndtmd 23995 symgtgp 24000 dvrcn 24078 sszcld 24713 divcnOLD 24764 divcn 24766 cncfmptc 24812 cncfmptid 24813 cncfmpt2f 24815 cdivcncf 24821 cnmpopc 24829 icchmeo 24845 icchmeoOLD 24846 htpycc 24886 pcocn 24924 pcohtpylem 24926 pcopt 24929 pcopt2 24930 pcoass 24931 pcorevlem 24933 relcmpcmet 25225 mulcncf 25353 limcvallem 25779 ellimc2 25785 limcres 25794 cnplimc 25795 cnlimc 25796 limccnp 25799 limccnp2 25800 dvbss 25809 perfdvf 25811 dvreslem 25817 dvres2lem 25818 dvcnp2 25828 dvcnp2OLD 25829 dvcn 25830 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvcmulf 25855 dvmptres2 25873 dvmptcmul 25875 dvmptntr 25882 dvmptfsum 25886 dvcnvlem 25887 dvcnv 25888 lhop1lem 25925 lhop2 25927 lhop 25928 dvcnvrelem2 25930 dvcnvre 25931 ftc1lem3 25952 ftc1cn 25957 taylthlem1 26288 ulmdvlem3 26318 psercn 26343 abelth 26358 logcn 26563 cxpcn 26661 cxpcnOLD 26662 cxpcn2 26663 cxpcn3 26665 resqrtcn 26666 sqrtcn 26667 loglesqrt 26678 xrlimcnp 26885 efrlim 26886 efrlimOLD 26887 ftalem3 26992 xrge0pluscn 33937 xrge0mulc1cn 33938 lmlimxrge0 33945 pnfneige0 33948 lmxrge0 33949 esumcvg 34083 cxpcncf1 34593 cvxpconn 35236 cvxsconn 35237 cvmsf1o 35266 cvmliftlem8 35286 cvmlift2lem9a 35297 cvmlift2lem11 35307 cvmlift3lem6 35318 ivthALT 36330 poimir 37654 broucube 37655 cnambfre 37669 ftc1cnnc 37693 areacirclem2 37710 areacirclem4 37712 fsumcncf 45883 ioccncflimc 45890 cncfuni 45891 icccncfext 45892 icocncflimc 45894 cncfiooicclem1 45898 cxpcncf2 45904 dvmptconst 45920 dvmptidg 45922 dvresntr 45923 itgsubsticclem 45980 dirkercncflem2 46109 dirkercncflem4 46111 fourierdlem32 46144 fourierdlem33 46145 fourierdlem62 46173 fourierdlem93 46204 fourierdlem101 46212 |
| Copyright terms: Public domain | W3C validator |