MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 22312
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 22062 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
3 toponmax 22075 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
4 ssexg 5247 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
52, 3, 4syl2anr 597 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
6 resttop 22311 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
71, 5, 6syl2an2r 682 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
8 simpr 485 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
9 sseqin2 4149 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
108, 9sylib 217 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
11 simpl 483 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
123adantr 481 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
13 elrestr 17139 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1411, 5, 12, 13syl3anc 1370 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1510, 14eqeltrrd 2840 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
16 elssuni 4871 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1715, 16syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
18 restval 17137 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
195, 18syldan 591 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
20 inss2 4163 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
21 vex 3436 . . . . . . . . . . 11 𝑥 ∈ V
2221inex1 5241 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2322elpw 4537 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2420, 23mpbir 230 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2524a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
2625fmpttd 6989 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
2726frnd 6608 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
2819, 27eqsstrd 3959 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
29 sspwuni 5029 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3028, 29sylib 217 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3117, 30eqssd 3938 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
32 istopon 22061 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
337, 31, 32sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cmpt 5157  ran crn 5590  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  TopOnctopon 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096
This theorem is referenced by:  restuni  22313  stoig  22314  restsn2  22322  restlp  22334  restperf  22335  perfopn  22336  cnrest  22436  cnrest2  22437  cnrest2r  22438  cnpresti  22439  cnprest  22440  cnprest2  22441  restcnrm  22513  connsuba  22571  kgentopon  22689  1stckgenlem  22704  kgen2ss  22706  kgencn  22707  xkoinjcn  22838  qtoprest  22868  flimrest  23134  fclsrest  23175  flfcntr  23194  efmndtmd  23252  symgtgp  23257  dvrcn  23335  sszcld  23980  divcn  24031  cncfmptc  24075  cncfmptid  24076  cncfmpt2f  24078  cdivcncf  24084  cnmpopc  24091  icchmeo  24104  htpycc  24143  pcocn  24180  pcohtpylem  24182  pcopt  24185  pcopt2  24186  pcoass  24187  pcorevlem  24189  relcmpcmet  24482  limcvallem  25035  ellimc2  25041  limcres  25050  cnplimc  25051  cnlimc  25052  limccnp  25055  limccnp2  25056  dvbss  25065  perfdvf  25067  dvreslem  25073  dvres2lem  25074  dvcnp2  25084  dvcn  25085  dvaddbr  25102  dvmulbr  25103  dvcmulf  25109  dvmptres2  25126  dvmptcmul  25128  dvmptntr  25135  dvmptfsum  25139  dvcnvlem  25140  dvcnv  25141  lhop1lem  25177  lhop2  25179  lhop  25180  dvcnvrelem2  25182  dvcnvre  25183  ftc1lem3  25202  ftc1cn  25207  taylthlem1  25532  ulmdvlem3  25561  psercn  25585  abelth  25600  logcn  25802  cxpcn  25898  cxpcn2  25899  cxpcn3  25901  resqrtcn  25902  sqrtcn  25903  loglesqrt  25911  xrlimcnp  26118  efrlim  26119  ftalem3  26224  xrge0pluscn  31890  xrge0mulc1cn  31891  lmlimxrge0  31898  pnfneige0  31901  lmxrge0  31902  esumcvg  32054  cxpcncf1  32575  cvxpconn  33204  cvxsconn  33205  cvmsf1o  33234  cvmliftlem8  33254  cvmlift2lem9a  33265  cvmlift2lem11  33275  cvmlift3lem6  33286  ivthALT  34524  poimir  35810  broucube  35811  cnambfre  35825  ftc1cnnc  35849  areacirclem2  35866  areacirclem4  35868  fsumcncf  43419  ioccncflimc  43426  cncfuni  43427  icccncfext  43428  icocncflimc  43430  cncfiooicclem1  43434  cxpcncf2  43440  dvmptconst  43456  dvmptidg  43458  dvresntr  43459  itgsubsticclem  43516  dirkercncflem2  43645  dirkercncflem4  43647  fourierdlem32  43680  fourierdlem33  43681  fourierdlem62  43709  fourierdlem93  43740  fourierdlem101  43748
  Copyright terms: Public domain W3C validator