| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resttopon | Structured version Visualization version GIF version | ||
| Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| resttopon | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22800 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | id 22 | . . . 4 ⊢ (𝐴 ⊆ 𝑋 → 𝐴 ⊆ 𝑋) | |
| 3 | toponmax 22813 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 4 | ssexg 5278 | . . . 4 ⊢ ((𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anr 597 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ V) |
| 6 | resttop 23047 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) ∈ Top) | |
| 7 | 1, 5, 6 | syl2an2r 685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ Top) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
| 9 | sseqin2 4186 | . . . . . 6 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) | |
| 10 | 8, 9 | sylib 218 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 11 | simpl 482 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | |
| 12 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝑋 ∈ 𝐽) |
| 13 | elrestr 17391 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋 ∈ 𝐽) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 14 | 11, 5, 12, 13 | syl3anc 1373 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 15 | 10, 14 | eqeltrrd 2829 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
| 16 | elssuni 4901 | . . . 4 ⊢ (𝐴 ∈ (𝐽 ↾t 𝐴) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ ∪ (𝐽 ↾t 𝐴)) |
| 18 | restval 17389 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | |
| 19 | 5, 18 | syldan 591 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) |
| 20 | inss2 4201 | . . . . . . . . 9 ⊢ (𝑥 ∩ 𝐴) ⊆ 𝐴 | |
| 21 | vex 3451 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 22 | 21 | inex1 5272 | . . . . . . . . . 10 ⊢ (𝑥 ∩ 𝐴) ∈ V |
| 23 | 22 | elpw 4567 | . . . . . . . . 9 ⊢ ((𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 ↔ (𝑥 ∩ 𝐴) ⊆ 𝐴) |
| 24 | 20, 23 | mpbir 231 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴 |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑥 ∩ 𝐴) ∈ 𝒫 𝐴) |
| 26 | 25 | fmpttd 7087 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)):𝐽⟶𝒫 𝐴) |
| 27 | 26 | frnd 6696 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴)) ⊆ 𝒫 𝐴) |
| 28 | 19, 27 | eqsstrd 3981 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴) |
| 29 | sspwuni 5064 | . . . 4 ⊢ ((𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 ↔ ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) | |
| 30 | 28, 29 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → ∪ (𝐽 ↾t 𝐴) ⊆ 𝐴) |
| 31 | 17, 30 | eqssd 3964 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 32 | istopon 22799 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ 𝐴 = ∪ (𝐽 ↾t 𝐴))) | |
| 33 | 7, 31, 32 | sylanbrc 583 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 TopOnctopon 22797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: restuni 23049 stoig 23050 restsn2 23058 restlp 23070 restperf 23071 perfopn 23072 cnrest 23172 cnrest2 23173 cnrest2r 23174 cnpresti 23175 cnprest 23176 cnprest2 23177 restcnrm 23249 connsuba 23307 kgentopon 23425 1stckgenlem 23440 kgen2ss 23442 kgencn 23443 xkoinjcn 23574 qtoprest 23604 flimrest 23870 fclsrest 23911 flfcntr 23930 efmndtmd 23988 symgtgp 23993 dvrcn 24071 sszcld 24706 divcnOLD 24757 divcn 24759 cncfmptc 24805 cncfmptid 24806 cncfmpt2f 24808 cdivcncf 24814 cnmpopc 24822 icchmeo 24838 icchmeoOLD 24839 htpycc 24879 pcocn 24917 pcohtpylem 24919 pcopt 24922 pcopt2 24923 pcoass 24924 pcorevlem 24926 relcmpcmet 25218 mulcncf 25346 limcvallem 25772 ellimc2 25778 limcres 25787 cnplimc 25788 cnlimc 25789 limccnp 25792 limccnp2 25793 dvbss 25802 perfdvf 25804 dvreslem 25810 dvres2lem 25811 dvcnp2 25821 dvcnp2OLD 25822 dvcn 25823 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvcmulf 25848 dvmptres2 25866 dvmptcmul 25868 dvmptntr 25875 dvmptfsum 25879 dvcnvlem 25880 dvcnv 25881 lhop1lem 25918 lhop2 25920 lhop 25921 dvcnvrelem2 25923 dvcnvre 25924 ftc1lem3 25945 ftc1cn 25950 taylthlem1 26281 ulmdvlem3 26311 psercn 26336 abelth 26351 logcn 26556 cxpcn 26654 cxpcnOLD 26655 cxpcn2 26656 cxpcn3 26658 resqrtcn 26659 sqrtcn 26660 loglesqrt 26671 xrlimcnp 26878 efrlim 26879 efrlimOLD 26880 ftalem3 26985 xrge0pluscn 33930 xrge0mulc1cn 33931 lmlimxrge0 33938 pnfneige0 33941 lmxrge0 33942 esumcvg 34076 cxpcncf1 34586 cvxpconn 35229 cvxsconn 35230 cvmsf1o 35259 cvmliftlem8 35279 cvmlift2lem9a 35290 cvmlift2lem11 35300 cvmlift3lem6 35311 ivthALT 36323 poimir 37647 broucube 37648 cnambfre 37662 ftc1cnnc 37686 areacirclem2 37703 areacirclem4 37705 fsumcncf 45876 ioccncflimc 45883 cncfuni 45884 icccncfext 45885 icocncflimc 45887 cncfiooicclem1 45891 cxpcncf2 45897 dvmptconst 45913 dvmptidg 45915 dvresntr 45916 itgsubsticclem 45973 dirkercncflem2 46102 dirkercncflem4 46104 fourierdlem32 46137 fourierdlem33 46138 fourierdlem62 46166 fourierdlem93 46197 fourierdlem101 46205 |
| Copyright terms: Public domain | W3C validator |