MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Structured version   Visualization version   GIF version

Theorem resttopon 23169
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))

Proof of Theorem resttopon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 topontop 22919 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
3 toponmax 22932 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
4 ssexg 5323 . . . 4 ((𝐴𝑋𝑋𝐽) → 𝐴 ∈ V)
52, 3, 4syl2anr 597 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ V)
6 resttop 23168 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ V) → (𝐽t 𝐴) ∈ Top)
71, 5, 6syl2an2r 685 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ Top)
8 simpr 484 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
9 sseqin2 4223 . . . . . 6 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
108, 9sylib 218 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) = 𝐴)
11 simpl 482 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐽 ∈ (TopOn‘𝑋))
123adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝑋𝐽)
13 elrestr 17473 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V ∧ 𝑋𝐽) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1411, 5, 12, 13syl3anc 1373 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑋𝐴) ∈ (𝐽t 𝐴))
1510, 14eqeltrrd 2842 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ (𝐽t 𝐴))
16 elssuni 4937 . . . 4 (𝐴 ∈ (𝐽t 𝐴) → 𝐴 (𝐽t 𝐴))
1715, 16syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 (𝐽t 𝐴))
18 restval 17471 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
195, 18syldan 591 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) = ran (𝑥𝐽 ↦ (𝑥𝐴)))
20 inss2 4238 . . . . . . . . 9 (𝑥𝐴) ⊆ 𝐴
21 vex 3484 . . . . . . . . . . 11 𝑥 ∈ V
2221inex1 5317 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2322elpw 4604 . . . . . . . . 9 ((𝑥𝐴) ∈ 𝒫 𝐴 ↔ (𝑥𝐴) ⊆ 𝐴)
2420, 23mpbir 231 . . . . . . . 8 (𝑥𝐴) ∈ 𝒫 𝐴
2524a1i 11 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝑥𝐴) ∈ 𝒫 𝐴)
2625fmpttd 7135 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝑥𝐽 ↦ (𝑥𝐴)):𝐽⟶𝒫 𝐴)
2726frnd 6744 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ran (𝑥𝐽 ↦ (𝑥𝐴)) ⊆ 𝒫 𝐴)
2819, 27eqsstrd 4018 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝒫 𝐴)
29 sspwuni 5100 . . . 4 ((𝐽t 𝐴) ⊆ 𝒫 𝐴 (𝐽t 𝐴) ⊆ 𝐴)
3028, 29sylib 218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ⊆ 𝐴)
3117, 30eqssd 4001 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
32 istopon 22918 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) ↔ ((𝐽t 𝐴) ∈ Top ∧ 𝐴 = (𝐽t 𝐴)))
337, 31, 32sylanbrc 583 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600   cuni 4907  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  TopOnctopon 22916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953
This theorem is referenced by:  restuni  23170  stoig  23171  restsn2  23179  restlp  23191  restperf  23192  perfopn  23193  cnrest  23293  cnrest2  23294  cnrest2r  23295  cnpresti  23296  cnprest  23297  cnprest2  23298  restcnrm  23370  connsuba  23428  kgentopon  23546  1stckgenlem  23561  kgen2ss  23563  kgencn  23564  xkoinjcn  23695  qtoprest  23725  flimrest  23991  fclsrest  24032  flfcntr  24051  efmndtmd  24109  symgtgp  24114  dvrcn  24192  sszcld  24839  divcnOLD  24890  divcn  24892  cncfmptc  24938  cncfmptid  24939  cncfmpt2f  24941  cdivcncf  24947  cnmpopc  24955  icchmeo  24971  icchmeoOLD  24972  htpycc  25012  pcocn  25050  pcohtpylem  25052  pcopt  25055  pcopt2  25056  pcoass  25057  pcorevlem  25059  relcmpcmet  25352  mulcncf  25480  limcvallem  25906  ellimc2  25912  limcres  25921  cnplimc  25922  cnlimc  25923  limccnp  25926  limccnp2  25927  dvbss  25936  perfdvf  25938  dvreslem  25944  dvres2lem  25945  dvcnp2  25955  dvcnp2OLD  25956  dvcn  25957  dvaddbr  25974  dvmulbr  25975  dvmulbrOLD  25976  dvcmulf  25982  dvmptres2  26000  dvmptcmul  26002  dvmptntr  26009  dvmptfsum  26013  dvcnvlem  26014  dvcnv  26015  lhop1lem  26052  lhop2  26054  lhop  26055  dvcnvrelem2  26057  dvcnvre  26058  ftc1lem3  26079  ftc1cn  26084  taylthlem1  26415  ulmdvlem3  26445  psercn  26470  abelth  26485  logcn  26689  cxpcn  26787  cxpcnOLD  26788  cxpcn2  26789  cxpcn3  26791  resqrtcn  26792  sqrtcn  26793  loglesqrt  26804  xrlimcnp  27011  efrlim  27012  efrlimOLD  27013  ftalem3  27118  xrge0pluscn  33939  xrge0mulc1cn  33940  lmlimxrge0  33947  pnfneige0  33950  lmxrge0  33951  esumcvg  34087  cxpcncf1  34610  cvxpconn  35247  cvxsconn  35248  cvmsf1o  35277  cvmliftlem8  35297  cvmlift2lem9a  35308  cvmlift2lem11  35318  cvmlift3lem6  35329  ivthALT  36336  poimir  37660  broucube  37661  cnambfre  37675  ftc1cnnc  37699  areacirclem2  37716  areacirclem4  37718  fsumcncf  45893  ioccncflimc  45900  cncfuni  45901  icccncfext  45902  icocncflimc  45904  cncfiooicclem1  45908  cxpcncf2  45914  dvmptconst  45930  dvmptidg  45932  dvresntr  45933  itgsubsticclem  45990  dirkercncflem2  46119  dirkercncflem4  46121  fourierdlem32  46154  fourierdlem33  46155  fourierdlem62  46183  fourierdlem93  46214  fourierdlem101  46222
  Copyright terms: Public domain W3C validator