Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satff Structured version   Visualization version   GIF version

Theorem satff 35437
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 28-Oct-2023.)
Assertion
Ref Expression
satff ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀m ω))

Proof of Theorem satff
StepHypRef Expression
1 satffun 35436 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → Fun ((𝑀 Sat 𝐸)‘𝑁))
2 satfdmfmla 35427 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁))
3 df-fn 6539 . . 3 (((𝑀 Sat 𝐸)‘𝑁) Fn (Fmla‘𝑁) ↔ (Fun ((𝑀 Sat 𝐸)‘𝑁) ∧ dom ((𝑀 Sat 𝐸)‘𝑁) = (Fmla‘𝑁)))
41, 2, 3sylanbrc 583 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁) Fn (Fmla‘𝑁))
5 satfrnmapom 35397 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω))
6 df-f 6540 . 2 (((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀m ω) ↔ (((𝑀 Sat 𝐸)‘𝑁) Fn (Fmla‘𝑁) ∧ ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω)))
74, 5, 6sylanbrc 583 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑁):(Fmla‘𝑁)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3931  𝒫 cpw 4580  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  ωcom 7866  m cmap 8845   Sat csat 35363  Fmlacfmla 35364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-map 8847  df-goel 35367  df-gona 35368  df-goal 35369  df-sat 35370  df-fmla 35372
This theorem is referenced by:  satfun  35438
  Copyright terms: Public domain W3C validator