![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > satff | Structured version Visualization version GIF version |
Description: The satisfaction predicate as function over wff codes in the model π and the binary relation πΈ on π. (Contributed by AV, 28-Oct-2023.) |
Ref | Expression |
---|---|
satff | β’ ((π β π β§ πΈ β π β§ π β Ο) β ((π Sat πΈ)βπ):(Fmlaβπ)βΆπ« (π βm Ο)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satffun 34686 | . . 3 β’ ((π β π β§ πΈ β π β§ π β Ο) β Fun ((π Sat πΈ)βπ)) | |
2 | satfdmfmla 34677 | . . 3 β’ ((π β π β§ πΈ β π β§ π β Ο) β dom ((π Sat πΈ)βπ) = (Fmlaβπ)) | |
3 | df-fn 6546 | . . 3 β’ (((π Sat πΈ)βπ) Fn (Fmlaβπ) β (Fun ((π Sat πΈ)βπ) β§ dom ((π Sat πΈ)βπ) = (Fmlaβπ))) | |
4 | 1, 2, 3 | sylanbrc 583 | . 2 β’ ((π β π β§ πΈ β π β§ π β Ο) β ((π Sat πΈ)βπ) Fn (Fmlaβπ)) |
5 | satfrnmapom 34647 | . 2 β’ ((π β π β§ πΈ β π β§ π β Ο) β ran ((π Sat πΈ)βπ) β π« (π βm Ο)) | |
6 | df-f 6547 | . 2 β’ (((π Sat πΈ)βπ):(Fmlaβπ)βΆπ« (π βm Ο) β (((π Sat πΈ)βπ) Fn (Fmlaβπ) β§ ran ((π Sat πΈ)βπ) β π« (π βm Ο))) | |
7 | 4, 5, 6 | sylanbrc 583 | 1 β’ ((π β π β§ πΈ β π β§ π β Ο) β ((π Sat πΈ)βπ):(Fmlaβπ)βΆπ« (π βm Ο)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 π« cpw 4602 dom cdm 5676 ran crn 5677 Fun wfun 6537 Fn wfn 6538 βΆwf 6539 βcfv 6543 (class class class)co 7411 Οcom 7857 βm cmap 8822 Sat csat 34613 Fmlacfmla 34614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-map 8824 df-goel 34617 df-gona 34618 df-goal 34619 df-sat 34620 df-fmla 34622 |
This theorem is referenced by: satfun 34688 |
Copyright terms: Public domain | W3C validator |