![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftcan1 | Structured version Visualization version GIF version |
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftcan1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11500 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | shftfval.1 | . . . . . 6 ⊢ 𝐹 ∈ V | |
3 | 2 | 2shfti 15069 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) |
4 | 1, 3 | mpdan 685 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) |
5 | negid 11547 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
6 | 5 | oveq2d 7442 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐹 shift (𝐴 + -𝐴)) = (𝐹 shift 0)) |
7 | 4, 6 | eqtrd 2768 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift 0)) |
8 | 7 | fveq1d 6904 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = ((𝐹 shift 0)‘𝐵)) |
9 | 2 | shftidt 15071 | . 2 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 0)‘𝐵) = (𝐹‘𝐵)) |
10 | 8, 9 | sylan9eq 2788 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ‘cfv 6553 (class class class)co 7426 ℂcc 11146 0cc0 11148 + caddc 11151 -cneg 11485 shift cshi 15055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 df-neg 11487 df-shft 15056 |
This theorem is referenced by: shftcan2 15073 climshft 15562 |
Copyright terms: Public domain | W3C validator |