MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftcan1 Structured version   Visualization version   GIF version

Theorem shftcan1 14775
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftcan1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))

Proof of Theorem shftcan1
StepHypRef Expression
1 negcl 11204 . . . . 5 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 shftfval.1 . . . . . 6 𝐹 ∈ V
322shfti 14772 . . . . 5 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴)))
41, 3mpdan 683 . . . 4 (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴)))
5 negid 11251 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
65oveq2d 7284 . . . 4 (𝐴 ∈ ℂ → (𝐹 shift (𝐴 + -𝐴)) = (𝐹 shift 0))
74, 6eqtrd 2779 . . 3 (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift 0))
87fveq1d 6770 . 2 (𝐴 ∈ ℂ → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = ((𝐹 shift 0)‘𝐵))
92shftidt 14774 . 2 (𝐵 ∈ ℂ → ((𝐹 shift 0)‘𝐵) = (𝐹𝐵))
108, 9sylan9eq 2799 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cfv 6430  (class class class)co 7268  cc 10853  0cc0 10855   + caddc 10858  -cneg 11189   shift cshi 14758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-neg 11191  df-shft 14759
This theorem is referenced by:  shftcan2  14776  climshft  15266
  Copyright terms: Public domain W3C validator