MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftcan1 Structured version   Visualization version   GIF version

Theorem shftcan1 15036
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftcan1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))

Proof of Theorem shftcan1
StepHypRef Expression
1 negcl 11464 . . . . 5 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 shftfval.1 . . . . . 6 𝐹 ∈ V
322shfti 15033 . . . . 5 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴)))
41, 3mpdan 684 . . . 4 (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴)))
5 negid 11511 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
65oveq2d 7421 . . . 4 (𝐴 ∈ ℂ → (𝐹 shift (𝐴 + -𝐴)) = (𝐹 shift 0))
74, 6eqtrd 2766 . . 3 (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift 0))
87fveq1d 6887 . 2 (𝐴 ∈ ℂ → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = ((𝐹 shift 0)‘𝐵))
92shftidt 15035 . 2 (𝐵 ∈ ℂ → ((𝐹 shift 0)‘𝐵) = (𝐹𝐵))
108, 9sylan9eq 2786 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  cfv 6537  (class class class)co 7405  cc 11110  0cc0 11112   + caddc 11115  -cneg 11449   shift cshi 15019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-neg 11451  df-shft 15020
This theorem is referenced by:  shftcan2  15037  climshft  15526
  Copyright terms: Public domain W3C validator