![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftcan1 | Structured version Visualization version GIF version |
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftcan1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11536 | . . . . 5 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
2 | shftfval.1 | . . . . . 6 ⊢ 𝐹 ∈ V | |
3 | 2 | 2shfti 15129 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℂ) → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) |
4 | 1, 3 | mpdan 686 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift (𝐴 + -𝐴))) |
5 | negid 11583 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | |
6 | 5 | oveq2d 7464 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐹 shift (𝐴 + -𝐴)) = (𝐹 shift 0)) |
7 | 4, 6 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 𝐴) shift -𝐴) = (𝐹 shift 0)) |
8 | 7 | fveq1d 6922 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = ((𝐹 shift 0)‘𝐵)) |
9 | 2 | shftidt 15131 | . 2 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 0)‘𝐵) = (𝐹‘𝐵)) |
10 | 8, 9 | sylan9eq 2800 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 + caddc 11187 -cneg 11521 shift cshi 15115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-shft 15116 |
This theorem is referenced by: shftcan2 15133 climshft 15622 |
Copyright terms: Public domain | W3C validator |