Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-mulid2 Structured version   Visualization version   GIF version

Theorem sn-mulid2 40890
Description: mulid2 11154 without ax-mulcom 11115. (Contributed by SN, 27-May-2024.)
Assertion
Ref Expression
sn-mulid2 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)

Proof of Theorem sn-mulid2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 11152 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 1cnd 11150 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ)
3 recn 11141 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
5 ax-icn 11110 . . . . . . . 8 i ∈ ℂ
65a1i 11 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
7 recn 11141 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
87adantl 482 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
96, 8mulcld 11175 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
102, 4, 9adddid 11179 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = ((1 · 𝑥) + (1 · (i · 𝑦))))
11 remulid2 40888 . . . . . . 7 (𝑥 ∈ ℝ → (1 · 𝑥) = 𝑥)
1211adantr 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑥) = 𝑥)
132, 6, 8mulassd 11178 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (1 · (i · 𝑦)))
14 sn-1ticom 40889 . . . . . . . . . 10 (1 · i) = (i · 1)
1514oveq1i 7367 . . . . . . . . 9 ((1 · i) · 𝑦) = ((i · 1) · 𝑦)
1615a1i 11 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = ((i · 1) · 𝑦))
176, 2, 8mulassd 11178 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 1) · 𝑦) = (i · (1 · 𝑦)))
18 remulid2 40888 . . . . . . . . . 10 (𝑦 ∈ ℝ → (1 · 𝑦) = 𝑦)
1918adantl 482 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑦) = 𝑦)
2019oveq2d 7373 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (1 · 𝑦)) = (i · 𝑦))
2116, 17, 203eqtrd 2780 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (i · 𝑦))
2213, 21eqtr3d 2778 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (i · 𝑦)) = (i · 𝑦))
2312, 22oveq12d 7375 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · 𝑥) + (1 · (i · 𝑦))) = (𝑥 + (i · 𝑦)))
2410, 23eqtrd 2776 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
25 oveq2 7365 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = (1 · (𝑥 + (i · 𝑦))))
26 id 22 . . . . 5 (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦)))
2725, 26eqeq12d 2752 . . . 4 (𝐴 = (𝑥 + (i · 𝑦)) → ((1 · 𝐴) = 𝐴 ↔ (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))))
2824, 27syl5ibrcom 246 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴))
2928rexlimivv 3196 . 2 (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴)
301, 29syl 17 1 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wrex 3073  (class class class)co 7357  cc 11049  cr 11050  1c1 11052  ici 11053   + caddc 11054   · cmul 11056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-2 12216  df-3 12217  df-resub 40821
This theorem is referenced by:  it1ei  40891
  Copyright terms: Public domain W3C validator