Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-mulid2 | Structured version Visualization version GIF version |
Description: mulid2 10905 without ax-mulcom 10866. (Contributed by SN, 27-May-2024.) |
Ref | Expression |
---|---|
sn-mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre 10903 | . 2 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | |
2 | 1cnd 10901 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ∈ ℂ) | |
3 | recn 10892 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ) |
5 | ax-icn 10861 | . . . . . . . 8 ⊢ i ∈ ℂ | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ) |
7 | recn 10892 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℂ) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ) |
9 | 6, 8 | mulcld 10926 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ) |
10 | 2, 4, 9 | adddid 10930 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = ((1 · 𝑥) + (1 · (i · 𝑦)))) |
11 | remulid2 40336 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ → (1 · 𝑥) = 𝑥) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑥) = 𝑥) |
13 | 2, 6, 8 | mulassd 10929 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (1 · (i · 𝑦))) |
14 | sn-1ticom 40337 | . . . . . . . . . 10 ⊢ (1 · i) = (i · 1) | |
15 | 14 | oveq1i 7265 | . . . . . . . . 9 ⊢ ((1 · i) · 𝑦) = ((i · 1) · 𝑦) |
16 | 15 | a1i 11 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = ((i · 1) · 𝑦)) |
17 | 6, 2, 8 | mulassd 10929 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((i · 1) · 𝑦) = (i · (1 · 𝑦))) |
18 | remulid2 40336 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ → (1 · 𝑦) = 𝑦) | |
19 | 18 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · 𝑦) = 𝑦) |
20 | 19 | oveq2d 7271 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · (1 · 𝑦)) = (i · 𝑦)) |
21 | 16, 17, 20 | 3eqtrd 2782 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · i) · 𝑦) = (i · 𝑦)) |
22 | 13, 21 | eqtr3d 2780 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (i · 𝑦)) = (i · 𝑦)) |
23 | 12, 22 | oveq12d 7273 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((1 · 𝑥) + (1 · (i · 𝑦))) = (𝑥 + (i · 𝑦))) |
24 | 10, 23 | eqtrd 2778 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦))) |
25 | oveq2 7263 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = (1 · (𝑥 + (i · 𝑦)))) | |
26 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → 𝐴 = (𝑥 + (i · 𝑦))) | |
27 | 25, 26 | eqeq12d 2754 | . . . 4 ⊢ (𝐴 = (𝑥 + (i · 𝑦)) → ((1 · 𝐴) = 𝐴 ↔ (1 · (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))) |
28 | 24, 27 | syl5ibrcom 246 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴)) |
29 | 28 | rexlimivv 3220 | . 2 ⊢ (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (1 · 𝐴) = 𝐴) |
30 | 1, 29 | syl 17 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 ℝcr 10801 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-2 11966 df-3 11967 df-resub 40270 |
This theorem is referenced by: it1ei 40339 |
Copyright terms: Public domain | W3C validator |