Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > remulid2 | Structured version Visualization version GIF version |
Description: Commuted version of ax-1rid 10659 without ax-mulcom 10653. (Contributed by SN, 5-Feb-2024.) |
Ref | Expression |
---|---|
remulid2 | ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2953 | . . 3 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | ax-rrecex 10661 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | simpll 766 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
4 | 3 | recnd 10721 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
5 | simprl 770 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
6 | 5 | recnd 10721 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
7 | 4, 6, 4 | mulassd 10716 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (𝐴 · (𝑥 · 𝐴))) |
8 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) = 1) | |
9 | 8 | oveq1d 7172 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (1 · 𝐴)) |
10 | 3, 5, 8 | remulinvcom 39957 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝑥 · 𝐴) = 1) |
11 | 10 | oveq2d 7173 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = (𝐴 · 1)) |
12 | ax-1rid 10659 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
13 | 3, 12 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴) |
14 | 11, 13 | eqtrd 2794 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = 𝐴) |
15 | 7, 9, 14 | 3eqtr3d 2802 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
16 | 2, 15 | rexlimddv 3216 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 · 𝐴) = 𝐴) |
17 | 16 | ex 416 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (1 · 𝐴) = 𝐴)) |
18 | 1, 17 | syl5bir 246 | . 2 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 = 0 → (1 · 𝐴) = 𝐴)) |
19 | 1re 10693 | . . . 4 ⊢ 1 ∈ ℝ | |
20 | remul01 39933 | . . . 4 ⊢ (1 ∈ ℝ → (1 · 0) = 0) | |
21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝐴 = 0 → (1 · 0) = 0) |
22 | oveq2 7165 | . . 3 ⊢ (𝐴 = 0 → (1 · 𝐴) = (1 · 0)) | |
23 | id 22 | . . 3 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
24 | 21, 22, 23 | 3eqtr4d 2804 | . 2 ⊢ (𝐴 = 0 → (1 · 𝐴) = 𝐴) |
25 | 18, 24 | pm2.61d2 184 | 1 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 (class class class)co 7157 ℝcr 10588 0cc0 10589 1c1 10590 · cmul 10594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-po 5448 df-so 5449 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-ltxr 10732 df-2 11751 df-3 11752 df-resub 39892 |
This theorem is referenced by: sn-mulid2 39960 remulcand 39963 sn-0tie0 39964 |
Copyright terms: Public domain | W3C validator |