Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > remulid2 | Structured version Visualization version GIF version |
Description: Commuted version of ax-1rid 10941 without ax-mulcom 10935. (Contributed by SN, 5-Feb-2024.) |
Ref | Expression |
---|---|
remulid2 | ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . 3 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | ax-rrecex 10943 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | simpll 764 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
4 | 3 | recnd 11003 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
5 | simprl 768 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
6 | 5 | recnd 11003 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
7 | 4, 6, 4 | mulassd 10998 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (𝐴 · (𝑥 · 𝐴))) |
8 | simprr 770 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 𝑥) = 1) | |
9 | 8 | oveq1d 7290 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((𝐴 · 𝑥) · 𝐴) = (1 · 𝐴)) |
10 | 3, 5, 8 | remulinvcom 40414 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝑥 · 𝐴) = 1) |
11 | 10 | oveq2d 7291 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = (𝐴 · 1)) |
12 | ax-1rid 10941 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
13 | 3, 12 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴) |
14 | 11, 13 | eqtrd 2778 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (𝐴 · (𝑥 · 𝐴)) = 𝐴) |
15 | 7, 9, 14 | 3eqtr3d 2786 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
16 | 2, 15 | rexlimddv 3220 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 · 𝐴) = 𝐴) |
17 | 16 | ex 413 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 → (1 · 𝐴) = 𝐴)) |
18 | 1, 17 | syl5bir 242 | . 2 ⊢ (𝐴 ∈ ℝ → (¬ 𝐴 = 0 → (1 · 𝐴) = 𝐴)) |
19 | 1re 10975 | . . . 4 ⊢ 1 ∈ ℝ | |
20 | remul01 40390 | . . . 4 ⊢ (1 ∈ ℝ → (1 · 0) = 0) | |
21 | 19, 20 | mp1i 13 | . . 3 ⊢ (𝐴 = 0 → (1 · 0) = 0) |
22 | oveq2 7283 | . . 3 ⊢ (𝐴 = 0 → (1 · 𝐴) = (1 · 0)) | |
23 | id 22 | . . 3 ⊢ (𝐴 = 0 → 𝐴 = 0) | |
24 | 21, 22, 23 | 3eqtr4d 2788 | . 2 ⊢ (𝐴 = 0 → (1 · 𝐴) = 𝐴) |
25 | 18, 24 | pm2.61d2 181 | 1 ⊢ (𝐴 ∈ ℝ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-2 12036 df-3 12037 df-resub 40349 |
This theorem is referenced by: sn-mulid2 40417 remulcand 40420 sn-0tie0 40421 |
Copyright terms: Public domain | W3C validator |