HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  golem1 Structured version   Visualization version   GIF version

Theorem golem1 30862
Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.)
Hypotheses
Ref Expression
golem1.1 𝐴C
golem1.2 𝐵C
golem1.3 𝐶C
golem1.4 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
golem1.5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
golem1.6 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
golem1.7 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
golem1.8 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
golem1.9 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
Assertion
Ref Expression
golem1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))

Proof of Theorem golem1
StepHypRef Expression
1 golem1.1 . . . . . . . . . . 11 𝐴C
21choccli 29898 . . . . . . . . . 10 (⊥‘𝐴) ∈ C
3 stcl 30807 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐴) ∈ C → (𝑓‘(⊥‘𝐴)) ∈ ℝ))
42, 3mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℝ)
54recnd 11096 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℂ)
6 golem1.2 . . . . . . . . . . 11 𝐵C
76choccli 29898 . . . . . . . . . 10 (⊥‘𝐵) ∈ C
8 stcl 30807 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐵) ∈ C → (𝑓‘(⊥‘𝐵)) ∈ ℝ))
97, 8mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℝ)
109recnd 11096 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℂ)
11 golem1.3 . . . . . . . . . . 11 𝐶C
1211choccli 29898 . . . . . . . . . 10 (⊥‘𝐶) ∈ C
13 stcl 30807 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐶) ∈ C → (𝑓‘(⊥‘𝐶)) ∈ ℝ))
1412, 13mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℝ)
1514recnd 11096 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℂ)
165, 10, 15addassd 11090 . . . . . . 7 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))))
1710, 15addcld 11087 . . . . . . . 8 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) ∈ ℂ)
185, 17addcomd 11270 . . . . . . 7 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
1916, 18eqtrd 2776 . . . . . 6 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
2019oveq1d 7344 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
215, 10addcld 11087 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) ∈ ℂ)
221, 6chincli 30051 . . . . . . . . 9 (𝐴𝐵) ∈ C
23 stcl 30807 . . . . . . . . 9 (𝑓 ∈ States → ((𝐴𝐵) ∈ C → (𝑓‘(𝐴𝐵)) ∈ ℝ))
2422, 23mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℝ)
2524recnd 11096 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℂ)
266, 11chincli 30051 . . . . . . . . 9 (𝐵𝐶) ∈ C
27 stcl 30807 . . . . . . . . 9 (𝑓 ∈ States → ((𝐵𝐶) ∈ C → (𝑓‘(𝐵𝐶)) ∈ ℝ))
2826, 27mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℝ)
2928recnd 11096 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℂ)
3025, 29addcld 11087 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) ∈ ℂ)
3111, 1chincli 30051 . . . . . . . 8 (𝐶𝐴) ∈ C
32 stcl 30807 . . . . . . . 8 (𝑓 ∈ States → ((𝐶𝐴) ∈ C → (𝑓‘(𝐶𝐴)) ∈ ℝ))
3331, 32mpi 20 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℝ)
3433recnd 11096 . . . . . 6 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℂ)
3521, 30, 15, 34add4d 11296 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3617, 30, 5, 34add4d 11296 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3720, 35, 363eqtr4d 2786 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
385, 25, 10, 29add4d 11296 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
3938oveq1d 7344 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
4010, 25, 15, 29add4d 11296 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
4140oveq1d 7344 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
4237, 39, 413eqtr4d 2786 . . 3 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
431, 6stji1i 30833 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))))
446, 11stji1i 30833 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶))))
4543, 44oveq12d 7347 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))))
4611, 1stji1i 30833 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴))))
4745, 46oveq12d 7347 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
486, 1stji1i 30833 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))))
49 incom 4147 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
5049fveq2i 6822 . . . . . . 7 (𝑓‘(𝐵𝐴)) = (𝑓‘(𝐴𝐵))
5150oveq2i 7340 . . . . . 6 ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵)))
5248, 51eqtrdi 2792 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))))
5311, 6stji1i 30833 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))))
54 incom 4147 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
5554fveq2i 6822 . . . . . . 7 (𝑓‘(𝐶𝐵)) = (𝑓‘(𝐵𝐶))
5655oveq2i 7340 . . . . . 6 ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))
5753, 56eqtrdi 2792 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶))))
5852, 57oveq12d 7347 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))))
591, 11stji1i 30833 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))))
60 incom 4147 . . . . . . 7 (𝐴𝐶) = (𝐶𝐴)
6160fveq2i 6822 . . . . . 6 (𝑓‘(𝐴𝐶)) = (𝑓‘(𝐶𝐴))
6261oveq2i 7340 . . . . 5 ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))
6359, 62eqtrdi 2792 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴))))
6458, 63oveq12d 7347 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
6542, 47, 643eqtr4d 2786 . 2 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))))
66 golem1.4 . . . . 5 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
6766fveq2i 6822 . . . 4 (𝑓𝐹) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵)))
68 golem1.5 . . . . 5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
6968fveq2i 6822 . . . 4 (𝑓𝐺) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))
7067, 69oveq12i 7341 . . 3 ((𝑓𝐹) + (𝑓𝐺)) = ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))))
71 golem1.6 . . . 4 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
7271fveq2i 6822 . . 3 (𝑓𝐻) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))
7370, 72oveq12i 7341 . 2 (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))))
74 golem1.7 . . . . 5 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
7574fveq2i 6822 . . . 4 (𝑓𝐷) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴)))
76 golem1.8 . . . . 5 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
7776fveq2i 6822 . . . 4 (𝑓𝑅) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))
7875, 77oveq12i 7341 . . 3 ((𝑓𝐷) + (𝑓𝑅)) = ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))))
79 golem1.9 . . . 4 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
8079fveq2i 6822 . . 3 (𝑓𝑆) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))
8178, 80oveq12i 7341 . 2 (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))))
8265, 73, 813eqtr4g 2801 1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cin 3896  cfv 6473  (class class class)co 7329  cr 10963   + caddc 10967   C cch 29520  cort 29521   chj 29524  Statescst 29553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-inf2 9490  ax-cc 10284  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041  ax-pre-sup 11042  ax-addf 11043  ax-mulf 11044  ax-hilex 29590  ax-hfvadd 29591  ax-hvcom 29592  ax-hvass 29593  ax-hv0cl 29594  ax-hvaddid 29595  ax-hfvmul 29596  ax-hvmulid 29597  ax-hvmulass 29598  ax-hvdistr1 29599  ax-hvdistr2 29600  ax-hvmul0 29601  ax-hfi 29670  ax-his1 29673  ax-his2 29674  ax-his3 29675  ax-his4 29676  ax-hcompl 29793
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-2o 8360  df-oadd 8363  df-omul 8364  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-fi 9260  df-sup 9291  df-inf 9292  df-oi 9359  df-card 9788  df-acn 9791  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-div 11726  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-q 12782  df-rp 12824  df-xneg 12941  df-xadd 12942  df-xmul 12943  df-ioo 13176  df-ico 13178  df-icc 13179  df-fz 13333  df-fzo 13476  df-fl 13605  df-seq 13815  df-exp 13876  df-hash 14138  df-cj 14901  df-re 14902  df-im 14903  df-sqrt 15037  df-abs 15038  df-clim 15288  df-rlim 15289  df-sum 15489  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-starv 17066  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-unif 17074  df-hom 17075  df-cco 17076  df-rest 17222  df-topn 17223  df-0g 17241  df-gsum 17242  df-topgen 17243  df-pt 17244  df-prds 17247  df-xrs 17302  df-qtop 17307  df-imas 17308  df-xps 17310  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-submnd 18520  df-mulg 18789  df-cntz 19011  df-cmn 19475  df-psmet 20687  df-xmet 20688  df-met 20689  df-bl 20690  df-mopn 20691  df-fbas 20692  df-fg 20693  df-cnfld 20696  df-top 22141  df-topon 22158  df-topsp 22180  df-bases 22194  df-cld 22268  df-ntr 22269  df-cls 22270  df-nei 22347  df-cn 22476  df-cnp 22477  df-lm 22478  df-haus 22564  df-tx 22811  df-hmeo 23004  df-fil 23095  df-fm 23187  df-flim 23188  df-flf 23189  df-xms 23571  df-ms 23572  df-tms 23573  df-cfil 24517  df-cau 24518  df-cmet 24519  df-grpo 29084  df-gid 29085  df-ginv 29086  df-gdiv 29087  df-ablo 29136  df-vc 29150  df-nv 29183  df-va 29186  df-ba 29187  df-sm 29188  df-0v 29189  df-vs 29190  df-nmcv 29191  df-ims 29192  df-dip 29292  df-ssp 29313  df-ph 29404  df-cbn 29454  df-hnorm 29559  df-hba 29560  df-hvsub 29562  df-hlim 29563  df-hcau 29564  df-sh 29798  df-ch 29812  df-oc 29843  df-ch0 29844  df-st 30802
This theorem is referenced by:  golem2  30863
  Copyright terms: Public domain W3C validator