HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  golem1 Structured version   Visualization version   GIF version

Theorem golem1 30050
Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.)
Hypotheses
Ref Expression
golem1.1 𝐴C
golem1.2 𝐵C
golem1.3 𝐶C
golem1.4 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
golem1.5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
golem1.6 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
golem1.7 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
golem1.8 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
golem1.9 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
Assertion
Ref Expression
golem1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))

Proof of Theorem golem1
StepHypRef Expression
1 golem1.1 . . . . . . . . . . 11 𝐴C
21choccli 29086 . . . . . . . . . 10 (⊥‘𝐴) ∈ C
3 stcl 29995 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐴) ∈ C → (𝑓‘(⊥‘𝐴)) ∈ ℝ))
42, 3mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℝ)
54recnd 10671 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℂ)
6 golem1.2 . . . . . . . . . . 11 𝐵C
76choccli 29086 . . . . . . . . . 10 (⊥‘𝐵) ∈ C
8 stcl 29995 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐵) ∈ C → (𝑓‘(⊥‘𝐵)) ∈ ℝ))
97, 8mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℝ)
109recnd 10671 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℂ)
11 golem1.3 . . . . . . . . . . 11 𝐶C
1211choccli 29086 . . . . . . . . . 10 (⊥‘𝐶) ∈ C
13 stcl 29995 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐶) ∈ C → (𝑓‘(⊥‘𝐶)) ∈ ℝ))
1412, 13mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℝ)
1514recnd 10671 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℂ)
165, 10, 15addassd 10665 . . . . . . 7 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))))
1710, 15addcld 10662 . . . . . . . 8 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) ∈ ℂ)
185, 17addcomd 10844 . . . . . . 7 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
1916, 18eqtrd 2858 . . . . . 6 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
2019oveq1d 7173 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
215, 10addcld 10662 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) ∈ ℂ)
221, 6chincli 29239 . . . . . . . . 9 (𝐴𝐵) ∈ C
23 stcl 29995 . . . . . . . . 9 (𝑓 ∈ States → ((𝐴𝐵) ∈ C → (𝑓‘(𝐴𝐵)) ∈ ℝ))
2422, 23mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℝ)
2524recnd 10671 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℂ)
266, 11chincli 29239 . . . . . . . . 9 (𝐵𝐶) ∈ C
27 stcl 29995 . . . . . . . . 9 (𝑓 ∈ States → ((𝐵𝐶) ∈ C → (𝑓‘(𝐵𝐶)) ∈ ℝ))
2826, 27mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℝ)
2928recnd 10671 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℂ)
3025, 29addcld 10662 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) ∈ ℂ)
3111, 1chincli 29239 . . . . . . . 8 (𝐶𝐴) ∈ C
32 stcl 29995 . . . . . . . 8 (𝑓 ∈ States → ((𝐶𝐴) ∈ C → (𝑓‘(𝐶𝐴)) ∈ ℝ))
3331, 32mpi 20 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℝ)
3433recnd 10671 . . . . . 6 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℂ)
3521, 30, 15, 34add4d 10870 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3617, 30, 5, 34add4d 10870 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3720, 35, 363eqtr4d 2868 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
385, 25, 10, 29add4d 10870 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
3938oveq1d 7173 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
4010, 25, 15, 29add4d 10870 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
4140oveq1d 7173 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
4237, 39, 413eqtr4d 2868 . . 3 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
431, 6stji1i 30021 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))))
446, 11stji1i 30021 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶))))
4543, 44oveq12d 7176 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))))
4611, 1stji1i 30021 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴))))
4745, 46oveq12d 7176 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
486, 1stji1i 30021 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))))
49 incom 4180 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
5049fveq2i 6675 . . . . . . 7 (𝑓‘(𝐵𝐴)) = (𝑓‘(𝐴𝐵))
5150oveq2i 7169 . . . . . 6 ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵)))
5248, 51syl6eq 2874 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))))
5311, 6stji1i 30021 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))))
54 incom 4180 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
5554fveq2i 6675 . . . . . . 7 (𝑓‘(𝐶𝐵)) = (𝑓‘(𝐵𝐶))
5655oveq2i 7169 . . . . . 6 ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))
5753, 56syl6eq 2874 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶))))
5852, 57oveq12d 7176 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))))
591, 11stji1i 30021 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))))
60 incom 4180 . . . . . . 7 (𝐴𝐶) = (𝐶𝐴)
6160fveq2i 6675 . . . . . 6 (𝑓‘(𝐴𝐶)) = (𝑓‘(𝐶𝐴))
6261oveq2i 7169 . . . . 5 ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))
6359, 62syl6eq 2874 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴))))
6458, 63oveq12d 7176 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
6542, 47, 643eqtr4d 2868 . 2 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))))
66 golem1.4 . . . . 5 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
6766fveq2i 6675 . . . 4 (𝑓𝐹) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵)))
68 golem1.5 . . . . 5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
6968fveq2i 6675 . . . 4 (𝑓𝐺) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))
7067, 69oveq12i 7170 . . 3 ((𝑓𝐹) + (𝑓𝐺)) = ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))))
71 golem1.6 . . . 4 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
7271fveq2i 6675 . . 3 (𝑓𝐻) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))
7370, 72oveq12i 7170 . 2 (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))))
74 golem1.7 . . . . 5 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
7574fveq2i 6675 . . . 4 (𝑓𝐷) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴)))
76 golem1.8 . . . . 5 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
7776fveq2i 6675 . . . 4 (𝑓𝑅) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))
7875, 77oveq12i 7170 . . 3 ((𝑓𝐷) + (𝑓𝑅)) = ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))))
79 golem1.9 . . . 4 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
8079fveq2i 6675 . . 3 (𝑓𝑆) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))
8178, 80oveq12i 7170 . 2 (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))))
8265, 73, 813eqtr4g 2883 1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cin 3937  cfv 6357  (class class class)co 7158  cr 10538   + caddc 10542   C cch 28708  cort 28709   chj 28712  Statescst 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvmulass 28786  ax-hvdistr1 28787  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864  ax-hcompl 28981
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-lm 21839  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cfil 23860  df-cau 23861  df-cmet 23862  df-grpo 28272  df-gid 28273  df-ginv 28274  df-gdiv 28275  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-vs 28378  df-nmcv 28379  df-ims 28380  df-dip 28480  df-ssp 28501  df-ph 28592  df-cbn 28642  df-hnorm 28747  df-hba 28748  df-hvsub 28750  df-hlim 28751  df-hcau 28752  df-sh 28986  df-ch 29000  df-oc 29031  df-ch0 29032  df-st 29990
This theorem is referenced by:  golem2  30051
  Copyright terms: Public domain W3C validator