HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  golem1 Structured version   Visualization version   GIF version

Theorem golem1 32303
Description: Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.)
Hypotheses
Ref Expression
golem1.1 𝐴C
golem1.2 𝐵C
golem1.3 𝐶C
golem1.4 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
golem1.5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
golem1.6 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
golem1.7 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
golem1.8 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
golem1.9 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
Assertion
Ref Expression
golem1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))

Proof of Theorem golem1
StepHypRef Expression
1 golem1.1 . . . . . . . . . . 11 𝐴C
21choccli 31339 . . . . . . . . . 10 (⊥‘𝐴) ∈ C
3 stcl 32248 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐴) ∈ C → (𝑓‘(⊥‘𝐴)) ∈ ℝ))
42, 3mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℝ)
54recnd 11318 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐴)) ∈ ℂ)
6 golem1.2 . . . . . . . . . . 11 𝐵C
76choccli 31339 . . . . . . . . . 10 (⊥‘𝐵) ∈ C
8 stcl 32248 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐵) ∈ C → (𝑓‘(⊥‘𝐵)) ∈ ℝ))
97, 8mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℝ)
109recnd 11318 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐵)) ∈ ℂ)
11 golem1.3 . . . . . . . . . . 11 𝐶C
1211choccli 31339 . . . . . . . . . 10 (⊥‘𝐶) ∈ C
13 stcl 32248 . . . . . . . . . 10 (𝑓 ∈ States → ((⊥‘𝐶) ∈ C → (𝑓‘(⊥‘𝐶)) ∈ ℝ))
1412, 13mpi 20 . . . . . . . . 9 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℝ)
1514recnd 11318 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(⊥‘𝐶)) ∈ ℂ)
165, 10, 15addassd 11312 . . . . . . 7 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))))
1710, 15addcld 11309 . . . . . . . 8 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) ∈ ℂ)
185, 17addcomd 11492 . . . . . . 7 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
1916, 18eqtrd 2780 . . . . . 6 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))))
2019oveq1d 7463 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
215, 10addcld 11309 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) ∈ ℂ)
221, 6chincli 31492 . . . . . . . . 9 (𝐴𝐵) ∈ C
23 stcl 32248 . . . . . . . . 9 (𝑓 ∈ States → ((𝐴𝐵) ∈ C → (𝑓‘(𝐴𝐵)) ∈ ℝ))
2422, 23mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℝ)
2524recnd 11318 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐴𝐵)) ∈ ℂ)
266, 11chincli 31492 . . . . . . . . 9 (𝐵𝐶) ∈ C
27 stcl 32248 . . . . . . . . 9 (𝑓 ∈ States → ((𝐵𝐶) ∈ C → (𝑓‘(𝐵𝐶)) ∈ ℝ))
2826, 27mpi 20 . . . . . . . 8 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℝ)
2928recnd 11318 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐵𝐶)) ∈ ℂ)
3025, 29addcld 11309 . . . . . 6 (𝑓 ∈ States → ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) ∈ ℂ)
3111, 1chincli 31492 . . . . . . . 8 (𝐶𝐴) ∈ C
32 stcl 32248 . . . . . . . 8 (𝑓 ∈ States → ((𝐶𝐴) ∈ C → (𝑓‘(𝐶𝐴)) ∈ ℝ))
3331, 32mpi 20 . . . . . . 7 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℝ)
3433recnd 11318 . . . . . 6 (𝑓 ∈ States → (𝑓‘(𝐶𝐴)) ∈ ℂ)
3521, 30, 15, 34add4d 11518 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + (𝑓‘(⊥‘𝐶))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3617, 30, 5, 34add4d 11518 . . . . 5 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + (𝑓‘(⊥‘𝐴))) + (((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶))) + (𝑓‘(𝐶𝐴)))))
3720, 35, 363eqtr4d 2790 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
385, 25, 10, 29add4d 11518 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
3938oveq1d 7463 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(⊥‘𝐵))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
4010, 25, 15, 29add4d 11518 . . . . 5 (𝑓 ∈ States → (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))))
4140oveq1d 7463 . . . 4 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(⊥‘𝐶))) + ((𝑓‘(𝐴𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
4237, 39, 413eqtr4d 2790 . . 3 (𝑓 ∈ States → ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
431, 6stji1i 32274 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))))
446, 11stji1i 32274 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶))))
4543, 44oveq12d 7466 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) = (((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))))
4611, 1stji1i 32274 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴))))
4745, 46oveq12d 7466 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = ((((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐴)))))
486, 1stji1i 32274 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))))
49 incom 4230 . . . . . . . 8 (𝐵𝐴) = (𝐴𝐵)
5049fveq2i 6923 . . . . . . 7 (𝑓‘(𝐵𝐴)) = (𝑓‘(𝐴𝐵))
5150oveq2i 7459 . . . . . 6 ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵)))
5248, 51eqtrdi 2796 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) = ((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))))
5311, 6stji1i 32274 . . . . . 6 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))))
54 incom 4230 . . . . . . . 8 (𝐶𝐵) = (𝐵𝐶)
5554fveq2i 6923 . . . . . . 7 (𝑓‘(𝐶𝐵)) = (𝑓‘(𝐵𝐶))
5655oveq2i 7459 . . . . . 6 ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))
5753, 56eqtrdi 2796 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))) = ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶))))
5852, 57oveq12d 7466 . . . 4 (𝑓 ∈ States → ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) = (((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))))
591, 11stji1i 32274 . . . . 5 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))))
60 incom 4230 . . . . . . 7 (𝐴𝐶) = (𝐶𝐴)
6160fveq2i 6923 . . . . . 6 (𝑓‘(𝐴𝐶)) = (𝑓‘(𝐶𝐴))
6261oveq2i 7459 . . . . 5 ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))
6359, 62eqtrdi 2796 . . . 4 (𝑓 ∈ States → (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))) = ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴))))
6458, 63oveq12d 7466 . . 3 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))) = ((((𝑓‘(⊥‘𝐵)) + (𝑓‘(𝐴𝐵))) + ((𝑓‘(⊥‘𝐶)) + (𝑓‘(𝐵𝐶)))) + ((𝑓‘(⊥‘𝐴)) + (𝑓‘(𝐶𝐴)))))
6542, 47, 643eqtr4d 2790 . 2 (𝑓 ∈ States → (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))))
66 golem1.4 . . . . 5 𝐹 = ((⊥‘𝐴) ∨ (𝐴𝐵))
6766fveq2i 6923 . . . 4 (𝑓𝐹) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵)))
68 golem1.5 . . . . 5 𝐺 = ((⊥‘𝐵) ∨ (𝐵𝐶))
6968fveq2i 6923 . . . 4 (𝑓𝐺) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))
7067, 69oveq12i 7460 . . 3 ((𝑓𝐹) + (𝑓𝐺)) = ((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶))))
71 golem1.6 . . . 4 𝐻 = ((⊥‘𝐶) ∨ (𝐶𝐴))
7271fveq2i 6923 . . 3 (𝑓𝐻) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴)))
7370, 72oveq12i 7460 . 2 (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓‘((⊥‘𝐴) ∨ (𝐴𝐵))) + (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐶)))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐴))))
74 golem1.7 . . . . 5 𝐷 = ((⊥‘𝐵) ∨ (𝐵𝐴))
7574fveq2i 6923 . . . 4 (𝑓𝐷) = (𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴)))
76 golem1.8 . . . . 5 𝑅 = ((⊥‘𝐶) ∨ (𝐶𝐵))
7776fveq2i 6923 . . . 4 (𝑓𝑅) = (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))
7875, 77oveq12i 7460 . . 3 ((𝑓𝐷) + (𝑓𝑅)) = ((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵))))
79 golem1.9 . . . 4 𝑆 = ((⊥‘𝐴) ∨ (𝐴𝐶))
8079fveq2i 6923 . . 3 (𝑓𝑆) = (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶)))
8178, 80oveq12i 7460 . 2 (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)) = (((𝑓‘((⊥‘𝐵) ∨ (𝐵𝐴))) + (𝑓‘((⊥‘𝐶) ∨ (𝐶𝐵)))) + (𝑓‘((⊥‘𝐴) ∨ (𝐴𝐶))))
8265, 73, 813eqtr4g 2805 1 (𝑓 ∈ States → (((𝑓𝐹) + (𝑓𝐺)) + (𝑓𝐻)) = (((𝑓𝐷) + (𝑓𝑅)) + (𝑓𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  cfv 6573  (class class class)co 7448  cr 11183   + caddc 11187   C cch 30961  cort 30962   chj 30965  Statescst 30994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-st 32243
This theorem is referenced by:  golem2  32304
  Copyright terms: Public domain W3C validator