MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subreci Structured version   Visualization version   GIF version

Theorem subreci 11963
Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017.)
Hypotheses
Ref Expression
subreci.1 𝐴 ∈ ℂ
subreci.2 𝐵 ∈ ℂ
subreci.3 𝐴 ≠ 0
subreci.4 𝐵 ≠ 0
Assertion
Ref Expression
subreci ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵))

Proof of Theorem subreci
StepHypRef Expression
1 subreci.1 . 2 𝐴 ∈ ℂ
2 subreci.3 . 2 𝐴 ≠ 0
3 subreci.2 . 2 𝐵 ∈ ℂ
4 subreci.4 . 2 𝐵 ≠ 0
5 subrec 11962 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵)))
61, 2, 3, 4, 5mp4an 693 1 ((1 / 𝐴) − (1 / 𝐵)) = ((𝐵𝐴) / (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7355  cc 11015  0cc0 11017  1c1 11018   · cmul 11022  cmin 11355   / cdiv 11785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786
This theorem is referenced by:  halfthird  12353  5recm6rec  12741
  Copyright terms: Public domain W3C validator