Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mvllmuld | Structured version Visualization version GIF version |
Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvllmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mvllmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mvllmuld.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
mvllmuld.4 | ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) |
Ref | Expression |
---|---|
mvllmuld | ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvllmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | mvllmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | mvllmuld.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0) | |
4 | 1, 2, 3 | divcan4d 11830 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐴) = 𝐵) |
5 | 2, 1 | mulcomd 11069 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
6 | mvllmuld.4 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) | |
7 | 5, 6 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) = 𝐶) |
8 | 7 | oveq1d 7330 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐴) = (𝐶 / 𝐴)) |
9 | 4, 8 | eqtr3d 2779 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 (class class class)co 7315 ℂcc 10942 0cc0 10944 · cmul 10949 / cdiv 11705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-po 5521 df-so 5522 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 |
This theorem is referenced by: exprec 13897 abs1m 15119 fsumkthpow 15838 efneg 15879 abvrec 20168 nminvr 23905 itgpowd 25286 cxpneg 25908 cxprec 25913 atantan 26145 atantayl2 26160 irrdifflemf 35552 fltne 40684 flt4lem5e 40696 rmxyneg 40946 bccm1k 42181 stoweidlem13 43791 eenglngeehlnmlem2 46336 i2linesd 46735 |
Copyright terms: Public domain | W3C validator |