![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvllmuld | Structured version Visualization version GIF version |
Description: Move the left term in a product on the LHS to the RHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvllmuld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mvllmuld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mvllmuld.3 | ⊢ (𝜑 → 𝐴 ≠ 0) |
mvllmuld.4 | ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) |
Ref | Expression |
---|---|
mvllmuld | ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvllmuld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | mvllmuld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | mvllmuld.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 0) | |
4 | 1, 2, 3 | divcan4d 12046 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐴) = 𝐵) |
5 | 2, 1 | mulcomd 11279 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
6 | mvllmuld.4 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) = 𝐶) | |
7 | 5, 6 | eqtr3d 2776 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐴) = 𝐶) |
8 | 7 | oveq1d 7445 | . 2 ⊢ (𝜑 → ((𝐵 · 𝐴) / 𝐴) = (𝐶 / 𝐴)) |
9 | 4, 8 | eqtr3d 2776 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 (class class class)co 7430 ℂcc 11150 0cc0 11152 · cmul 11157 / cdiv 11917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 |
This theorem is referenced by: exprec 14140 abs1m 15370 fsumkthpow 16088 efneg 16130 abvrec 20845 nminvr 24705 itgpowd 26105 cxpneg 26737 cxprec 26742 atantan 26980 atantayl2 26995 constrrtcclem 33739 irrdifflemf 37307 fltne 42630 flt4lem5e 42642 rmxyneg 42908 bccm1k 44337 stoweidlem13 45968 eenglngeehlnmlem2 48587 i2linesd 49009 |
Copyright terms: Public domain | W3C validator |