| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlat | Structured version Visualization version GIF version | ||
| Description: If an atom differs from its translation, the trace is an atom. Equation above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
| Ref | Expression |
|---|---|
| trlat.l | ⊢ ≤ = (le‘𝐾) |
| trlat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| trlat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlat.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlat.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp3l 1202 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝐹 ∈ 𝑇) | |
| 3 | simp2 1137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 4 | trlat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 5 | eqid 2731 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 6 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 7 | trlat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | trlat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | trlat.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | trlat.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | trlval2 40208 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐹) = ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊)) |
| 12 | 1, 2, 3, 11 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) = ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊)) |
| 13 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ∈ 𝐴) | |
| 14 | 4, 7, 8, 9 | ltrnat 40185 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
| 15 | 1, 2, 13, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ∈ 𝐴) |
| 16 | simp3r 1203 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝐹‘𝑃) ≠ 𝑃) | |
| 17 | 16 | necomd 2983 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → 𝑃 ≠ (𝐹‘𝑃)) |
| 18 | 4, 5, 6, 7, 8 | lhpat 40088 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) ∈ 𝐴 ∧ 𝑃 ≠ (𝐹‘𝑃))) → ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊) ∈ 𝐴) |
| 19 | 1, 3, 15, 17, 18 | syl112anc 1376 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → ((𝑃(join‘𝐾)(𝐹‘𝑃))(meet‘𝐾)𝑊) ∈ 𝐴) |
| 20 | 12, 19 | eqeltrd 2831 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39308 HLchlt 39395 LHypclh 40029 LTrncltrn 40146 trLctrl 40203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 df-trl 40204 |
| This theorem is referenced by: trlator0 40216 trlnidat 40218 trlnle 40231 trlval3 40232 trlval4 40233 cdlemc5 40240 cdlemg17dALTN 40709 cdlemg27a 40737 cdlemg31b0N 40739 cdlemg27b 40741 cdlemg31c 40744 cdlemg35 40758 dia2dimlem1 41109 dia2dimlem2 41110 dia2dimlem3 41111 |
| Copyright terms: Public domain | W3C validator |