MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeyg Structured version   Visualization version   GIF version

Theorem ttukeyg 10511
Description: The TeichmΓΌller-Tukey Lemma ttukey 10512 stated with the "choice" as an antecedent (the hypothesis βˆͺ 𝐴 ∈ dom card says that βˆͺ 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukeyg ((βˆͺ 𝐴 ∈ dom card ∧ 𝐴 β‰  βˆ… ∧ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)
Distinct variable group:   π‘₯,𝑦,𝐴

Proof of Theorem ttukeyg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4341 . . 3 (𝐴 β‰  βˆ… ↔ βˆƒπ‘§ 𝑧 ∈ 𝐴)
2 ttukey2g 10510 . . . . . 6 ((βˆͺ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐴 (𝑧 βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦))
3 simpr 484 . . . . . . 7 ((𝑧 βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦) β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)
43reximi 3078 . . . . . 6 (βˆƒπ‘₯ ∈ 𝐴 (𝑧 βŠ† π‘₯ ∧ βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)
52, 4syl 17 . . . . 5 ((βˆͺ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)
653exp 1116 . . . 4 (βˆͺ 𝐴 ∈ dom card β†’ (𝑧 ∈ 𝐴 β†’ (βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)))
76exlimdv 1928 . . 3 (βˆͺ 𝐴 ∈ dom card β†’ (βˆƒπ‘§ 𝑧 ∈ 𝐴 β†’ (βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)))
81, 7biimtrid 241 . 2 (βˆͺ 𝐴 ∈ dom card β†’ (𝐴 β‰  βˆ… β†’ (βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)))
983imp 1108 1 ((βˆͺ 𝐴 ∈ dom card ∧ 𝐴 β‰  βˆ… ∧ βˆ€π‘₯(π‘₯ ∈ 𝐴 ↔ (𝒫 π‘₯ ∩ Fin) βŠ† 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 Β¬ π‘₯ ⊊ 𝑦)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084  βˆ€wal 1531  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064   ∩ cin 3942   βŠ† wss 3943   ⊊ wpss 3944  βˆ…c0 4317  π’« cpw 4597  βˆͺ cuni 4902  dom cdm 5669  Fincfn 8938  cardccrd 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-fin 8942  df-card 9933
This theorem is referenced by:  ttukey  10512
  Copyright terms: Public domain W3C validator