MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeyg Structured version   Visualization version   GIF version

Theorem ttukeyg 10507
Description: The Teichmüller-Tukey Lemma ttukey 10508 stated with the "choice" as an antecedent (the hypothesis 𝐴 ∈ dom card says that 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukeyg (( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem ttukeyg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4338 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2 ttukey2g 10506 . . . . . 6 (( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
3 simpr 484 . . . . . . 7 ((𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) → ∀𝑦𝐴 ¬ 𝑥𝑦)
43reximi 3076 . . . . . 6 (∃𝑥𝐴 (𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
52, 4syl 17 . . . . 5 (( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
653exp 1116 . . . 4 ( 𝐴 ∈ dom card → (𝑧𝐴 → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
76exlimdv 1928 . . 3 ( 𝐴 ∈ dom card → (∃𝑧 𝑧𝐴 → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
81, 7biimtrid 241 . 2 ( 𝐴 ∈ dom card → (𝐴 ≠ ∅ → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
983imp 1108 1 (( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084  wal 1531  wex 1773  wcel 2098  wne 2932  wral 3053  wrex 3062  cin 3939  wss 3940  wpss 3941  c0 4314  𝒫 cpw 4594   cuni 4899  dom cdm 5666  Fincfn 8934  cardccrd 9925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-fin 8938  df-card 9929
This theorem is referenced by:  ttukey  10508
  Copyright terms: Public domain W3C validator