| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttukeyg | Structured version Visualization version GIF version | ||
| Description: The Teichmüller-Tukey Lemma ttukey 10409 stated with the "choice" as an antecedent (the hypothesis ∪ 𝐴 ∈ dom card says that ∪ 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ttukeyg | ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4300 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝐴) | |
| 2 | ttukey2g 10407 | . . . . . 6 ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝑧 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦)) | |
| 3 | simpr 484 | . . . . . . 7 ⊢ ((𝑧 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) → ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) | |
| 4 | 3 | reximi 3070 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑧 ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝑧 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
| 6 | 5 | 3exp 1119 | . . . 4 ⊢ (∪ 𝐴 ∈ dom card → (𝑧 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦))) |
| 7 | 6 | exlimdv 1934 | . . 3 ⊢ (∪ 𝐴 ∈ dom card → (∃𝑧 𝑧 ∈ 𝐴 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦))) |
| 8 | 1, 7 | biimtrid 242 | . 2 ⊢ (∪ 𝐴 ∈ dom card → (𝐴 ≠ ∅ → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦))) |
| 9 | 8 | 3imp 1110 | 1 ⊢ ((∪ 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∩ cin 3896 ⊆ wss 3897 ⊊ wpss 3898 ∅c0 4280 𝒫 cpw 4547 ∪ cuni 4856 dom cdm 5614 Fincfn 8869 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-fin 8873 df-card 9832 |
| This theorem is referenced by: ttukey 10409 |
| Copyright terms: Public domain | W3C validator |