MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeyg Structured version   Visualization version   GIF version

Theorem ttukeyg 10536
Description: The Teichmüller-Tukey Lemma ttukey 10537 stated with the "choice" as an antecedent (the hypothesis 𝐴 ∈ dom card says that 𝐴 is well-orderable). (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukeyg (( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem ttukeyg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4333 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
2 ttukey2g 10535 . . . . . 6 (( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴 (𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦))
3 simpr 484 . . . . . . 7 ((𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) → ∀𝑦𝐴 ¬ 𝑥𝑦)
43reximi 3075 . . . . . 6 (∃𝑥𝐴 (𝑧𝑥 ∧ ∀𝑦𝐴 ¬ 𝑥𝑦) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
52, 4syl 17 . . . . 5 (( 𝐴 ∈ dom card ∧ 𝑧𝐴 ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
653exp 1119 . . . 4 ( 𝐴 ∈ dom card → (𝑧𝐴 → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
76exlimdv 1933 . . 3 ( 𝐴 ∈ dom card → (∃𝑧 𝑧𝐴 → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
81, 7biimtrid 242 . 2 ( 𝐴 ∈ dom card → (𝐴 ≠ ∅ → (∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)))
983imp 1110 1 (( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  cin 3930  wss 3931  wpss 3932  c0 4313  𝒫 cpw 4580   cuni 4888  dom cdm 5659  Fincfn 8964  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-fin 8968  df-card 9958
This theorem is referenced by:  ttukey  10537
  Copyright terms: Public domain W3C validator