MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneip Structured version   Visualization version   GIF version

Theorem utopsnneip 24166
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnneip ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Distinct variable groups:   𝑣,𝑃   𝑣,𝑈   𝑣,𝑋
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem utopsnneip
Dummy variables 𝑝 𝑎 𝑏 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . 2 𝐽 = (unifTop‘𝑈)
2 fveq2 6830 . . . . . 6 (𝑟 = 𝑝 → ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
32eleq2d 2819 . . . . 5 (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
43cbvralvw 3211 . . . 4 (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
5 eleq1w 2816 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
65raleqbi1dv 3305 . . . 4 (𝑏 = 𝑎 → (∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
74, 6bitrid 283 . . 3 (𝑏 = 𝑎 → (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
87cbvrabv 3406 . 2 {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)}
9 simpl 482 . . . . . . 7 ((𝑞 = 𝑝𝑣𝑈) → 𝑞 = 𝑝)
109sneqd 4589 . . . . . 6 ((𝑞 = 𝑝𝑣𝑈) → {𝑞} = {𝑝})
1110imaeq2d 6015 . . . . 5 ((𝑞 = 𝑝𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝}))
1211mpteq2dva 5188 . . . 4 (𝑞 = 𝑝 → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1312rneqd 5884 . . 3 (𝑞 = 𝑝 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1413cbvmptv 5199 . 2 (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
151, 8, 14utopsnneiplem 24165 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  𝒫 cpw 4551  {csn 4577  cmpt 5176  ran crn 5622  cima 5624  cfv 6488  neicnei 23015  UnifOncust 24118  unifTopcutop 24148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-om 7805  df-1o 8393  df-2o 8394  df-en 8878  df-fin 8881  df-fi 9304  df-top 22812  df-nei 23016  df-ust 24119  df-utop 24149
This theorem is referenced by:  utopsnnei  24167  utopreg  24170  neipcfilu  24213
  Copyright terms: Public domain W3C validator