MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneip Structured version   Visualization version   GIF version

Theorem utopsnneip 24197
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnneip ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Distinct variable groups:   𝑣,𝑃   𝑣,𝑈   𝑣,𝑋
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem utopsnneip
Dummy variables 𝑝 𝑎 𝑏 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . 2 𝐽 = (unifTop‘𝑈)
2 fveq2 6896 . . . . . 6 (𝑟 = 𝑝 → ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
32eleq2d 2811 . . . . 5 (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
43cbvralvw 3224 . . . 4 (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
5 eleq1w 2808 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
65raleqbi1dv 3322 . . . 4 (𝑏 = 𝑎 → (∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
74, 6bitrid 282 . . 3 (𝑏 = 𝑎 → (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
87cbvrabv 3429 . 2 {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)}
9 simpl 481 . . . . . . 7 ((𝑞 = 𝑝𝑣𝑈) → 𝑞 = 𝑝)
109sneqd 4642 . . . . . 6 ((𝑞 = 𝑝𝑣𝑈) → {𝑞} = {𝑝})
1110imaeq2d 6064 . . . . 5 ((𝑞 = 𝑝𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝}))
1211mpteq2dva 5249 . . . 4 (𝑞 = 𝑝 → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1312rneqd 5940 . . 3 (𝑞 = 𝑝 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1413cbvmptv 5262 . 2 (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
151, 8, 14utopsnneiplem 24196 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  {crab 3418  𝒫 cpw 4604  {csn 4630  cmpt 5232  ran crn 5679  cima 5681  cfv 6549  neicnei 23045  UnifOncust 24148  unifTopcutop 24179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-1o 8487  df-er 8725  df-en 8965  df-fin 8968  df-fi 9436  df-top 22840  df-nei 23046  df-ust 24149  df-utop 24180
This theorem is referenced by:  utopsnnei  24198  utopreg  24201  neipcfilu  24245
  Copyright terms: Public domain W3C validator