MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneip Structured version   Visualization version   GIF version

Theorem utopsnneip 23507
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnneip ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Distinct variable groups:   𝑣,𝑃   𝑣,𝑈   𝑣,𝑋
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem utopsnneip
Dummy variables 𝑝 𝑎 𝑏 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . 2 𝐽 = (unifTop‘𝑈)
2 fveq2 6826 . . . . . 6 (𝑟 = 𝑝 → ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
32eleq2d 2822 . . . . 5 (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
43cbvralvw 3221 . . . 4 (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
5 eleq1w 2819 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
65raleqbi1dv 3303 . . . 4 (𝑏 = 𝑎 → (∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
74, 6bitrid 282 . . 3 (𝑏 = 𝑎 → (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
87cbvrabv 3413 . 2 {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)}
9 simpl 483 . . . . . . 7 ((𝑞 = 𝑝𝑣𝑈) → 𝑞 = 𝑝)
109sneqd 4586 . . . . . 6 ((𝑞 = 𝑝𝑣𝑈) → {𝑞} = {𝑝})
1110imaeq2d 6000 . . . . 5 ((𝑞 = 𝑝𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝}))
1211mpteq2dva 5193 . . . 4 (𝑞 = 𝑝 → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1312rneqd 5880 . . 3 (𝑞 = 𝑝 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1413cbvmptv 5206 . 2 (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
151, 8, 14utopsnneiplem 23506 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  {crab 3403  𝒫 cpw 4548  {csn 4574  cmpt 5176  ran crn 5622  cima 5624  cfv 6480  neicnei 22355  UnifOncust 23458  unifTopcutop 23489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-om 7782  df-1o 8368  df-er 8570  df-en 8806  df-fin 8809  df-fi 9269  df-top 22150  df-nei 22356  df-ust 23459  df-utop 23490
This theorem is referenced by:  utopsnnei  23508  utopreg  23511  neipcfilu  23555
  Copyright terms: Public domain W3C validator