Step | Hyp | Ref
| Expression |
1 | | utoptop.1 |
. 2
β’ π½ = (unifTopβπ) |
2 | | fveq2 6892 |
. . . . . 6
β’ (π = π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) = ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ)) |
3 | 2 | eleq2d 2818 |
. . . . 5
β’ (π = π β (π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) β π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ))) |
4 | 3 | cbvralvw 3233 |
. . . 4
β’
(βπ β
π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) β βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ)) |
5 | | eleq1w 2815 |
. . . . 5
β’ (π = π β (π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) β π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ))) |
6 | 5 | raleqbi1dv 3332 |
. . . 4
β’ (π = π β (βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) β βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ))) |
7 | 4, 6 | bitrid 282 |
. . 3
β’ (π = π β (βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ) β βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ))) |
8 | 7 | cbvrabv 3441 |
. 2
β’ {π β π« π β£ βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ)} = {π β π« π β£ βπ β π π β ((π β π β¦ ran (π£ β π β¦ (π£ β {π})))βπ)} |
9 | | simpl 482 |
. . . . . . 7
β’ ((π = π β§ π£ β π) β π = π) |
10 | 9 | sneqd 4641 |
. . . . . 6
β’ ((π = π β§ π£ β π) β {π} = {π}) |
11 | 10 | imaeq2d 6060 |
. . . . 5
β’ ((π = π β§ π£ β π) β (π£ β {π}) = (π£ β {π})) |
12 | 11 | mpteq2dva 5249 |
. . . 4
β’ (π = π β (π£ β π β¦ (π£ β {π})) = (π£ β π β¦ (π£ β {π}))) |
13 | 12 | rneqd 5938 |
. . 3
β’ (π = π β ran (π£ β π β¦ (π£ β {π})) = ran (π£ β π β¦ (π£ β {π}))) |
14 | 13 | cbvmptv 5262 |
. 2
β’ (π β π β¦ ran (π£ β π β¦ (π£ β {π}))) = (π β π β¦ ran (π£ β π β¦ (π£ β {π}))) |
15 | 1, 8, 14 | utopsnneiplem 23973 |
1
β’ ((π β (UnifOnβπ) β§ π β π) β ((neiβπ½)β{π}) = ran (π£ β π β¦ (π£ β {π}))) |