MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneip Structured version   Visualization version   GIF version

Theorem utopsnneip 24280
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utopsnneip ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Distinct variable groups:   𝑣,𝑃   𝑣,𝑈   𝑣,𝑋
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem utopsnneip
Dummy variables 𝑝 𝑎 𝑏 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . 2 𝐽 = (unifTop‘𝑈)
2 fveq2 6922 . . . . . 6 (𝑟 = 𝑝 → ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
32eleq2d 2830 . . . . 5 (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
43cbvralvw 3243 . . . 4 (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))
5 eleq1w 2827 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
65raleqbi1dv 3346 . . . 4 (𝑏 = 𝑎 → (∀𝑝𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
74, 6bitrid 283 . . 3 (𝑏 = 𝑎 → (∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)))
87cbvrabv 3454 . 2 {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑏 𝑏 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ ((𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)}
9 simpl 482 . . . . . . 7 ((𝑞 = 𝑝𝑣𝑈) → 𝑞 = 𝑝)
109sneqd 4660 . . . . . 6 ((𝑞 = 𝑝𝑣𝑈) → {𝑞} = {𝑝})
1110imaeq2d 6091 . . . . 5 ((𝑞 = 𝑝𝑣𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝}))
1211mpteq2dva 5266 . . . 4 (𝑞 = 𝑝 → (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1312rneqd 5963 . . 3 (𝑞 = 𝑝 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1413cbvmptv 5279 . 2 (𝑞𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
151, 8, 14utopsnneiplem 24279 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣𝑈 ↦ (𝑣 “ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  𝒫 cpw 4622  {csn 4648  cmpt 5249  ran crn 5701  cima 5703  cfv 6575  neicnei 23128  UnifOncust 24231  unifTopcutop 24262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-om 7906  df-1o 8524  df-2o 8525  df-en 9006  df-fin 9009  df-fi 9482  df-top 22923  df-nei 23129  df-ust 24232  df-utop 24263
This theorem is referenced by:  utopsnnei  24281  utopreg  24284  neipcfilu  24328
  Copyright terms: Public domain W3C validator