| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utopsnneip | Structured version Visualization version GIF version | ||
| Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
| Ref | Expression |
|---|---|
| utopsnneip | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | . 2 ⊢ 𝐽 = (unifTop‘𝑈) | |
| 2 | fveq2 6830 | . . . . . 6 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) | |
| 3 | 2 | eleq2d 2819 | . . . . 5 ⊢ (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 4 | 3 | cbvralvw 3211 | . . . 4 ⊢ (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) |
| 5 | eleq1w 2816 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) | |
| 6 | 5 | raleqbi1dv 3305 | . . . 4 ⊢ (𝑏 = 𝑎 → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝑏 = 𝑎 → (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 8 | 7 | cbvrabv 3406 | . 2 ⊢ {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)} |
| 9 | simpl 482 | . . . . . . 7 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → 𝑞 = 𝑝) | |
| 10 | 9 | sneqd 4589 | . . . . . 6 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → {𝑞} = {𝑝}) |
| 11 | 10 | imaeq2d 6015 | . . . . 5 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝})) |
| 12 | 11 | mpteq2dva 5188 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 13 | 12 | rneqd 5884 | . . 3 ⊢ (𝑞 = 𝑝 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 14 | 13 | cbvmptv 5199 | . 2 ⊢ (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 15 | 1, 8, 14 | utopsnneiplem 24165 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 𝒫 cpw 4551 {csn 4577 ↦ cmpt 5176 ran crn 5622 “ cima 5624 ‘cfv 6488 neicnei 23015 UnifOncust 24118 unifTopcutop 24148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1o 8393 df-2o 8394 df-en 8878 df-fin 8881 df-fi 9304 df-top 22812 df-nei 23016 df-ust 24119 df-utop 24149 |
| This theorem is referenced by: utopsnnei 24167 utopreg 24170 neipcfilu 24213 |
| Copyright terms: Public domain | W3C validator |