![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > utopsnneip | Structured version Visualization version GIF version |
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnneip | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop.1 | . 2 ⊢ 𝐽 = (unifTop‘𝑈) | |
2 | fveq2 6922 | . . . . . 6 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) | |
3 | 2 | eleq2d 2830 | . . . . 5 ⊢ (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
4 | 3 | cbvralvw 3243 | . . . 4 ⊢ (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) |
5 | eleq1w 2827 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) | |
6 | 5 | raleqbi1dv 3346 | . . . 4 ⊢ (𝑏 = 𝑎 → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝑏 = 𝑎 → (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
8 | 7 | cbvrabv 3454 | . 2 ⊢ {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)} |
9 | simpl 482 | . . . . . . 7 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → 𝑞 = 𝑝) | |
10 | 9 | sneqd 4660 | . . . . . 6 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → {𝑞} = {𝑝}) |
11 | 10 | imaeq2d 6091 | . . . . 5 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝})) |
12 | 11 | mpteq2dva 5266 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
13 | 12 | rneqd 5963 | . . 3 ⊢ (𝑞 = 𝑝 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
14 | 13 | cbvmptv 5279 | . 2 ⊢ (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
15 | 1, 8, 14 | utopsnneiplem 24279 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5249 ran crn 5701 “ cima 5703 ‘cfv 6575 neicnei 23128 UnifOncust 24231 unifTopcutop 24262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-om 7906 df-1o 8524 df-2o 8525 df-en 9006 df-fin 9009 df-fi 9482 df-top 22923 df-nei 23129 df-ust 24232 df-utop 24263 |
This theorem is referenced by: utopsnnei 24281 utopreg 24284 neipcfilu 24328 |
Copyright terms: Public domain | W3C validator |