![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > utopsnneip | Structured version Visualization version GIF version |
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
Ref | Expression |
---|---|
utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
Ref | Expression |
---|---|
utopsnneip | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utoptop.1 | . 2 ⊢ 𝐽 = (unifTop‘𝑈) | |
2 | fveq2 6896 | . . . . . 6 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) | |
3 | 2 | eleq2d 2811 | . . . . 5 ⊢ (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
4 | 3 | cbvralvw 3224 | . . . 4 ⊢ (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) |
5 | eleq1w 2808 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) | |
6 | 5 | raleqbi1dv 3322 | . . . 4 ⊢ (𝑏 = 𝑎 → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
7 | 4, 6 | bitrid 282 | . . 3 ⊢ (𝑏 = 𝑎 → (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
8 | 7 | cbvrabv 3429 | . 2 ⊢ {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)} |
9 | simpl 481 | . . . . . . 7 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → 𝑞 = 𝑝) | |
10 | 9 | sneqd 4642 | . . . . . 6 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → {𝑞} = {𝑝}) |
11 | 10 | imaeq2d 6064 | . . . . 5 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝})) |
12 | 11 | mpteq2dva 5249 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
13 | 12 | rneqd 5940 | . . 3 ⊢ (𝑞 = 𝑝 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
14 | 13 | cbvmptv 5262 | . 2 ⊢ (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
15 | 1, 8, 14 | utopsnneiplem 24196 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 𝒫 cpw 4604 {csn 4630 ↦ cmpt 5232 ran crn 5679 “ cima 5681 ‘cfv 6549 neicnei 23045 UnifOncust 24148 unifTopcutop 24179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-er 8725 df-en 8965 df-fin 8968 df-fi 9436 df-top 22840 df-nei 23046 df-ust 24149 df-utop 24180 |
This theorem is referenced by: utopsnnei 24198 utopreg 24201 neipcfilu 24245 |
Copyright terms: Public domain | W3C validator |