| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > utopsnneip | Structured version Visualization version GIF version | ||
| Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space 𝑈. (Contributed by Thierry Arnoux, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| utoptop.1 | ⊢ 𝐽 = (unifTop‘𝑈) |
| Ref | Expression |
|---|---|
| utopsnneip | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utoptop.1 | . 2 ⊢ 𝐽 = (unifTop‘𝑈) | |
| 2 | fveq2 6860 | . . . . . 6 ⊢ (𝑟 = 𝑝 → ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) = ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) | |
| 3 | 2 | eleq2d 2815 | . . . . 5 ⊢ (𝑟 = 𝑝 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 4 | 3 | cbvralvw 3216 | . . . 4 ⊢ (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)) |
| 5 | eleq1w 2812 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) | |
| 6 | 5 | raleqbi1dv 3313 | . . . 4 ⊢ (𝑏 = 𝑎 → (∀𝑝 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝑏 = 𝑎 → (∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝))) |
| 8 | 7 | cbvrabv 3419 | . 2 ⊢ {𝑏 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑏 𝑏 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ ((𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})))‘𝑝)} |
| 9 | simpl 482 | . . . . . . 7 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → 𝑞 = 𝑝) | |
| 10 | 9 | sneqd 4603 | . . . . . 6 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → {𝑞} = {𝑝}) |
| 11 | 10 | imaeq2d 6033 | . . . . 5 ⊢ ((𝑞 = 𝑝 ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑞}) = (𝑣 “ {𝑝})) |
| 12 | 11 | mpteq2dva 5202 | . . . 4 ⊢ (𝑞 = 𝑝 → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 13 | 12 | rneqd 5904 | . . 3 ⊢ (𝑞 = 𝑝 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞})) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 14 | 13 | cbvmptv 5213 | . 2 ⊢ (𝑞 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑞}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| 15 | 1, 8, 14 | utopsnneiplem 24141 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) = ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑃}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 𝒫 cpw 4565 {csn 4591 ↦ cmpt 5190 ran crn 5641 “ cima 5643 ‘cfv 6513 neicnei 22990 UnifOncust 24093 unifTopcutop 24124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-om 7845 df-1o 8436 df-2o 8437 df-en 8921 df-fin 8924 df-fi 9368 df-top 22787 df-nei 22991 df-ust 24094 df-utop 24125 |
| This theorem is referenced by: utopsnnei 24143 utopreg 24146 neipcfilu 24189 |
| Copyright terms: Public domain | W3C validator |