MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utopsnneip Structured version   Visualization version   GIF version

Theorem utopsnneip 23974
Description: The neighborhoods of a point 𝑃 for the topology induced by an uniform space π‘ˆ. (Contributed by Thierry Arnoux, 13-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTopβ€˜π‘ˆ)
Assertion
Ref Expression
utopsnneip ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
Distinct variable groups:   𝑣,𝑃   𝑣,π‘ˆ   𝑣,𝑋
Allowed substitution hint:   𝐽(𝑣)

Proof of Theorem utopsnneip
Dummy variables 𝑝 π‘Ž 𝑏 π‘ž π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . 2 𝐽 = (unifTopβ€˜π‘ˆ)
2 fveq2 6892 . . . . . 6 (π‘Ÿ = 𝑝 β†’ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘Ÿ) = ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘))
32eleq2d 2818 . . . . 5 (π‘Ÿ = 𝑝 β†’ (𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘Ÿ) ↔ 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘)))
43cbvralvw 3233 . . . 4 (βˆ€π‘Ÿ ∈ 𝑏 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘Ÿ) ↔ βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘))
5 eleq1w 2815 . . . . 5 (𝑏 = π‘Ž β†’ (𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘) ↔ π‘Ž ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘)))
65raleqbi1dv 3332 . . . 4 (𝑏 = π‘Ž β†’ (βˆ€π‘ ∈ 𝑏 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘) ↔ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘)))
74, 6bitrid 282 . . 3 (𝑏 = π‘Ž β†’ (βˆ€π‘Ÿ ∈ 𝑏 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘Ÿ) ↔ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘)))
87cbvrabv 3441 . 2 {𝑏 ∈ 𝒫 𝑋 ∣ βˆ€π‘Ÿ ∈ 𝑏 𝑏 ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘Ÿ)} = {π‘Ž ∈ 𝒫 𝑋 ∣ βˆ€π‘ ∈ π‘Ž π‘Ž ∈ ((π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})))β€˜π‘)}
9 simpl 482 . . . . . . 7 ((π‘ž = 𝑝 ∧ 𝑣 ∈ π‘ˆ) β†’ π‘ž = 𝑝)
109sneqd 4641 . . . . . 6 ((π‘ž = 𝑝 ∧ 𝑣 ∈ π‘ˆ) β†’ {π‘ž} = {𝑝})
1110imaeq2d 6060 . . . . 5 ((π‘ž = 𝑝 ∧ 𝑣 ∈ π‘ˆ) β†’ (𝑣 β€œ {π‘ž}) = (𝑣 β€œ {𝑝}))
1211mpteq2dva 5249 . . . 4 (π‘ž = 𝑝 β†’ (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})) = (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
1312rneqd 5938 . . 3 (π‘ž = 𝑝 β†’ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž})) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
1413cbvmptv 5262 . 2 (π‘ž ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {π‘ž}))) = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
151, 8, 14utopsnneiplem 23973 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋) β†’ ((neiβ€˜π½)β€˜{𝑃}) = ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑃})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431  π’« cpw 4603  {csn 4629   ↦ cmpt 5232  ran crn 5678   β€œ cima 5680  β€˜cfv 6544  neicnei 22822  UnifOncust 23925  unifTopcutop 23956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7859  df-1o 8469  df-er 8706  df-en 8943  df-fin 8946  df-fi 9409  df-top 22617  df-nei 22823  df-ust 23926  df-utop 23957
This theorem is referenced by:  utopsnnei  23975  utopreg  23978  neipcfilu  24022
  Copyright terms: Public domain W3C validator